Identification of Intratissue Sites for Xenobiotic Activation and Detoxication

  • Jeffrey Baron
  • Jeffrey M. Voigt
  • Tyrone B. Whitter
  • Thomas T. Kawabata
  • Shirley A. Knapp
  • F. Peter Guengerich
  • William B. Jakoby
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 197)


It is now apparent that the generation of reactive metabolites from a multitude of xenobiotics frequently preceeds the appearance of necrosis, mutagenesis, carcinogenesis, and other cytotoxicities (Mitchell et al., 1976; Boyd, 1980; Wright, 1980; Miller and Miller, 1981, 1982; Boyd and Statham, 1983). It is also evident, however, that xenobiotics that are biotransformed into reactive metabolites usually exert relatively selective toxic effects within most mammalian tissues, i.e., they often damage either a specific morphological cell type or groups of morphologically similar cells located within selected areas or regions of tissues (Mitchell et al., 1976; Rappaport, 1979; Boyd, 1980; Baron and Kawabata, 1983; Minchin and Boyd, 1983). Differential susceptibility of cells to toxicity that results as a consequence of the formation of reactive metabolites undoubtedly is related to differences in the ability of cells to both activate and detoxicate xenobiotics (Boyd, 1980; Baron and Kawabata, 1983; Minchin and Boyd, 1983). Primarily for this reason, the intratissue localizations and distributions of cytochrome P-450 isozymes, NADPH-cytochrome P-450 reductase, epoxide hydrolase, glutathione S-transferases, and other enzymes that participiate in the activation and detoxication of xenobiotics recently have come under intensive investigation. Such investigation however, has been hindered greatly by the heterogeneous nature of most mammalian tissues, as well as by the fact that morphologically similar cells, hepatocytes for example, can exhibit significant differences in their ability to metabolize xenobiotics (Wattenberg and Leong, 1962; Gangolli and Wright, 1971; Ji et al., 1981; Conway et al., 1982; Baron and Kawabata, 1983).


Hair Follicle Sebaceous Gland Epoxide Hydrolase Hydroxylase Activity Reactive Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baron, J., and Kawabata, T. T., 1983, Intratissue distribution of activating and detoxicating enzymes, in: “Biological Basis of Detoxication,” J. Caldwell and W. B. Jakoby, eds., p. 105, Academic Press, New York.Google Scholar
  2. Baron, J., and Kawabata, T. T., 1985, Localization and distribution of carcinogen-metabolizing enzymes and benzo[a]pyrene hydroxylase activity within rat and hamster pancreas, in: “Experimental PancreaticGoogle Scholar
  3. Carcinogenesis,“ D. G. Scarpelli, J. R. Reddy, and D. S. Longnecker, eds., CRC Press, Boca Raton.Google Scholar
  4. Baron, J., Redick, J. A., and Guengerich, F. P., 1978a, Immunohistochemical localizations of cytochromes P-450 in rat liver, Life Sci., 23: 2627.PubMedCrossRefGoogle Scholar
  5. Baron, J., Redick, J. A., Greenspan, P., and Taira, Y., 1978b, Immunohisto-chemical localization of NADPH-cytochrome c reductase in rat liver, Life Sci., 22: 1097.PubMedCrossRefGoogle Scholar
  6. Baron, J., Redick, J. A., and Guengerich, F. P., 1980, Immunohistochemical localization of epoxide hydratase in rat liver, Life Sci., 26: 489.PubMedCrossRefGoogle Scholar
  7. Baron, J., Redick, J. A., and Guengerich, F. P., 1981, An immunohistochemical study on the localizations and distributions of phenobarbital-and 3- methylcholanthrene-inducible cytochromes P-450 within the livers of untreated rats, J. Biol. Chem., 256: 5931.PubMedGoogle Scholar
  8. Baron, J., Redick, J. A., and Guengerich, F. P., 1982, Effects of 3-methyl-cholanthrene, 8-naphthoflavone, and phenobarbital on the 3-methylcholanthrene-inducible isozyme of cytochrome P-450 within centilobular, midzonal, and periportal hepatocytes, J. Biol. Chem., 257: 953.PubMedGoogle Scholar
  9. Baron, J., Kawabata, T. T., Redick, J. A., Knapp, S. A., Wick, D. G., Wallace, R. B., Jakoby, W. B., and Guengerich, F. P., 1983, Localiza-tion of carcinogen-metabolizing enzymes in human and animal tissues, in: “Extrahepatic Drug Metabolism and Chemical Carcinogenesis,” J. Rydstrom, J. Montelius, and M. Bengtsson, eds., p. 73, Elsevier Science Publishers, Amsterdam.Google Scholar
  10. Baron, J., Kawabata, T. T., Knapp, S. A., Voigt, J. M., Redick, J. A., Jakoby, W. B., and Guengerich, F. P., 1984, Intrahepatic distribution of xenobiotic-metabolizing enzymes, in: “Foreign Compound Metabolism,” J. Caldwell and G. D. Paulson, eds., p. 17, Taylor and Francis, London.Google Scholar
  11. Bickers, D. R., and Kappas, A., 1980, The skin as a site of chemical metabolism, in: “Extrahepatic Metabolism of Drugs and Other Foreign Chemicals,” T. E. Gram, ed., p. 295, Spectrum Publications, New York.Google Scholar
  12. Black, O., and Stoming, T. A., 1983, Characterization of benzopyrene metabolism in rat pancreas, Cancer Lett., 18: 97.PubMedCrossRefGoogle Scholar
  13. Black, O., Murrill, E., and Pallas, F., 1980, Pancreatic metabolism of benzo(a)pyrene in vitro and in vivo in the Long-Evans rat, Res. Commun. Chem. Pathol. Pharmacol., 29: 291.PubMedGoogle Scholar
  14. Black, O., Murrill, E., and Fanska, C., 1981, Metabolism of 3-methylcholanthrene in rat pancreas, Dig. Dis. Sci., 26: 358.PubMedCrossRefGoogle Scholar
  15. Bockman, D.E., 1981, Cells of origin of pancreatic cancer: experimental animal tumors related to human pancreas, Cancer, 47: 1528.PubMedCrossRefGoogle Scholar
  16. Bockman, D. E., Black, O., Mills, L. R., Mainz, D. L., and Webster, P. D., 1976, Fine structure of pancreatic adenocarcinoma induced in rats by 7,12-dimethylbenz[a]anthracene, J. Natl. Cancer Inst., 57: 931.Google Scholar
  17. Bockman, D. E., Black, O., Mills, L. R., and Webster, P. D., 1978, Origin of tubular complexes developing during induction of pancreatic adenocarcinoma by 7,12-dimethylbenz(a)anthracene, Am. J. Pathol., 90: 645.PubMedGoogle Scholar
  18. Boyd, M. R., 1977, Evidence for the Clara cell as a site of cytochrome P-450-dependent mixed-function oxidase activity in lung, Nature (London), 269: 713.CrossRefGoogle Scholar
  19. Boyd, M. R., 1980, Biochemical mechanisms in chemical-induced lung injury: roles of metabolic activation, CRC Crit. Rev. Toxicol., 7: 103CrossRefGoogle Scholar
  20. Boyd, M. R., and Statham, C. N., 1983,The effect of hepatic metabolism on the production and toxicity of reactive metabolites in extrahepatic organs, Drug Metab. Rev., 14: 35PubMedCrossRefGoogle Scholar
  21. Brittebo, E. B., Castonguay, A., Furuya, K., and Hecht, S. S., 1983, Metabolism of tobacco-specific nitrosamines by cultured rat nasal mucosa, Cancer Res., 43: 4343PubMedGoogle Scholar
  22. Butcher, E. 0.,1934,The hair cycles in the albino rat, Anat. Res., 61:5.CrossRefGoogle Scholar
  23. Chow, S. A., and Fischer, L. J., 1984, Alterations in rat pancreatic B-cell function induced by prenatal exposure to cyproheptadine, Diabetes, 33: 572Google Scholar
  24. Cohen, G. M., and Moore, B. P., 1976, Metabolism of [3H]benzo[a]pyrene by different portions of the respiratory tract, Biochem. Pharmacol.,25:1623.Google Scholar
  25. Conway, J. G., Kauffman, F. C., Ji, S., and Thurman, R. G., 1982, Rates of sulfation and glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule, Mol. Pharmacol., 22: 509PubMedGoogle Scholar
  26. Devereux, T. R., and Fouts, J. R., 1981, Xenobiotic metabolism by alveolar type II cells isolated from rabbit lung, Biochem. Pharmacol.,30:1231.PubMedCrossRefGoogle Scholar
  27. Devereux, T. R., Hook, G. E. R., and Fouts, J. R., 1979, Foreign compound metabolism by isolated cells from rabbit lung, Drug Metab. Dispos.,7:70.Google Scholar
  28. Devereux, T. R., Jones, K. G., Bend, J. R., Fouts, J. R., Statham, C. N., and Boyd, M. R., 1982, In vitro metabolic activation of the pulmonary toxin, 4-ipomeanol, in nonciliated bronchiolar epithelial (Clara) and alveolar type II cells isolated from rabbit lung, J. Pharmacol. Exp.Ther., 220:223.Google Scholar
  29. Dissin, J., Mills, L. R., Mains, D. L., Black, O., and Webster, P. D., 1975, Experimental induction of pancreatic adenocarcinomas in rats, J. Natl. Cancer Inst., 55: 857.Google Scholar
  30. Fjellstedt, T. A., Allen, R. H., Duncan, B. K., and Jakoby, W. B., 1973, Enzymatic conjugation of epoxides with glutathione, J. Biol. Chem., 248: 3702.Google Scholar
  31. Flaks, B., and Lucas, J., 1973, Persistent ultrastructural changes in pancreatic acinar cells induced by 2-acetylaminofluorene, Chem.-Biol. Interact., 6: 91.PubMedCrossRefGoogle Scholar
  32. Flaks, B., Moore, M. A., and Flaks, A., 1981, Ultrastructural analysis of pancreatic carcinogenesis. IV. Pseudoductular transformation of acini in the hamster pancreas during N-nitroso-bis(2-hydroxypropyl)amine carcinogenesis, Carcinogenesis, 2: 1241.PubMedCrossRefGoogle Scholar
  33. Flaks, B., Moore, M. A., and Flaks, A., 1982, Ultrastructural analysis of pancreatic carcinogenesis. VI. Early changes in hamster acinar cells induced by N-nitroso-bis(2-hydroxypropyl)amine, Carcinogenesis, 3: 1063.PubMedCrossRefGoogle Scholar
  34. Gangolli, S., and Wright, M., 1971, The histochemical demonstration of aniline hydroxylase activity in rat liver, Histochem. J., 3: 107PubMedCrossRefGoogle Scholar
  35. Gati, E., Calop, J. Y., and Lafaverges, F., 1973, Histochemical demonstration of the benzo(a)pyrene hydroxylase activity in animal skin, Ann. Histochem., 18: 311.Google Scholar
  36. Grasso, P., Williams, M., Hodgson, R., Wright, M. G., and Gangolli, S. D., 1971, The histochemical distribution of aniline hydroxylase activity in rat tissues, Histochem. J., 3: 117.PubMedCrossRefGoogle Scholar
  37. Guengerich, F. P., 1978, Separation and purification of multiple forms of microsomal cytochrome P-450. Partial characterization of three apparently homogeneous cytochromes P-450 prepared from livers of phenobarbital-and 3-methylcholanthrene-treated rats, J. Biol. Chem., 253: 7931.Google Scholar
  38. Guengerich, F. P., Wang, P., Mitchell, M. B., and Mason, P. S., 1979, Rat and human liver microsomal epoxide hydrolase. Purification and evidence for the existence of multiple forms, J. Biol. Chem., 254: 12248.Google Scholar
  39. Guengerich, F. P., Dannan, G. A., Wright, S. T., Martin, M. V., and Kaminsky, L. S., 1982a, Purification and characterization of liver microsomal cytochromes P-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or 6-naphthoflavone, Biochemistry, 21: 6019.PubMedCrossRefGoogle Scholar
  40. Guengerich, F. P., Dannan, G. A., Wright, S. T., Martin, M. V., and Kaminsky, L. S., 1982b, Purification and characterization of microsomal cytochromes P-450, Xenobiotica, 12: 701.PubMedCrossRefGoogle Scholar
  41. Habig, W. H., Pabst, M. J., and Jakoby, W. B., 1974, Glutathione Stransferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem., 249: 7130.PubMedGoogle Scholar
  42. Hecht, S. S., Chen, C. B., Ohmori, T., and Hoffman, D., 1980, Comparative carcinogenicity in F344 rats of the tobacco-specific nitrosamines, N’-nitrosonornicotine and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-1butanone, Cancer Res., 40: 298.PubMedGoogle Scholar
  43. Hsu, S. M., Raine, L., and Fanger, H., 1981, Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures, J. Histochem. Cytochem., 29: 577.Google Scholar
  44. Ichikawa, Y., and Yamano, T., 1967, Electron spin resonance of microsomal cytochromes. Correlation of the amount of CO-binding species with so-called microsomal Fex in microsomes of normal tissues and rat liver microsomes of sudan III-treated animals, Arch. Biochem. Biophys., 121: 742.Google Scholar
  45. Iqbal, Z. M., Varnes, M. E., Yoshida, A., and Epstein, S. S., 1977, Metabolism of benzo(a)pyrene by guinea pig pancreatic microsomes, Cancer Res., 37: 1011.PubMedGoogle Scholar
  46. Ishii-Ohba, H., Guengerich, F. P., and Baron, J., 1984, Localization of epoxide-metabolizing enzymes in rat testis, Biochim. Biophys. Acta, 802: 326.Google Scholar
  47. Ji, S., Lemasters, J. J., and Thurman, R. G., 1981, A fluorometric method to measure sublobular rates of mixed-function oxidation in the hemoglobin-free perfused rat liver, Mol. Pharmacol., 19: 513.PubMedGoogle Scholar
  48. Kahng, M. W., Smith, M. W., and Trump, B. F., 1981, Aryl hydrocarbon hydroxylase in human bronchial epithelium and blood monocyte, J. Natl. Cancer Inst., 66: 227.Google Scholar
  49. Kawabata, T. T., Guengerich, F. P., and Baron, J., 1981, An immunohisto- chemical study on the localization and distribution of epoxide hydrolase within livers of untreated rats, Mol. Pharmacol., 20: 709.Google Scholar
  50. Kawabata, T. T., Guengerich, F. P., and Baron, J., 1983, Effects of phenobarbital, trans-stilbene oxide, and 3-methylcholanthrene on epoxide hydrolase within centrilobular, midzonal, and periportal regions of rat liver, J. Biol. Chem., 258: 7767.PubMedGoogle Scholar
  51. Kawabata, T. T., Wick, D. G., Guengerich, F. P., and Baron, J., 1984, Immunohistochemical localization of carcinogen-metabolizing enzymes within the rat and hamster exocrine pancreas, Cancer Res., 44: 215.PubMedGoogle Scholar
  52. Lazarus, S. S., and Shapiro, S. H., 1972, Serial morphologic changes in rabbit pancreatic islet cells after streptozotocin, Lab. Invest., 27: 174.Google Scholar
  53. Lee, K. P., and Trochimowicz, H. J., 1982, Induction of nasal tumors in rats exposed to hexamethylphosphoramide by inhalation, J. Natl. Cancer Inst., 68: 157.PubMedGoogle Scholar
  54. Levitt, M. H., Harris, C. C., Squire, R., Springer, S., Wenk, M., Mollelo, C., Thomas, D., Kingsbury, E., and Newkirk, C., 1977, Experimental pancreatic carcinogenesis. I. Morphogenesis of pancreatic adenocarcinoma in the Syrian golden hamster induced by N-nitroso-bis(2hydroxypropyl)amine, Am. J. Pathol., 88: 5.Google Scholar
  55. Mannervik, B., and Jensson, H., 1982, Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat liver cytosol, J. Biol. Chem., 257: 9909.PubMedGoogle Scholar
  56. Miller, E. C., and Miller, J. A., 1981, Mechanisms of chemical carcinogenesis, Cancer, 47: 1055.PubMedCrossRefGoogle Scholar
  57. Miller, E. C., and Miller, J. A., 1982, Reactive metabolites as key intermediates in pharmacologic and toxicologic responses: examples from chemical carcinogenesis, in: “Biological Reactive Intermediates - II. Chemical Mechanisms and Biological Effects,” R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, G. G. Gibson, and C. M. Witmer, eds., p. 1, Plenum Press, New York.Google Scholar
  58. Minchin, R. F., and Boyd, M. R., 1983, Localization of metabolic activation and deactivation systems in the lung: significance to the pulmonary toxicity of xenobiotics, Ann. Rev. Pharmacol. Toxicol., 23: 217.CrossRefGoogle Scholar
  59. Mitchell, J. R., Nelson, S. D., Thorgeirsson, S. S., McMurtry, R. J., and Dybing, E., 1976, Metabolic activation: biochemical basis for many drug-induced liver injuries, in: “Progress in Liver Diseases,” H. Popper and F. Schaffner, eds., Vol. V, p. 259, Grune and Stratton, New York.Google Scholar
  60. Nakai, T., and Shubik, P., 1964, Autoradiographic localization of tissue-bound tritiated 7,12-dimethylbenz[a]anthracene in mouse skin 24 and 48 hours after single application, J. Natl. Cancer Inst., 33: 887.PubMedGoogle Scholar
  61. Pannatier, A., Jenner, P., Testa, B., and Etter, J. C., 1978, The skin as a drug-metabolizing organ, Drug Metab. Rev., 8: 319.PubMedCrossRefGoogle Scholar
  62. Pour, P., 1978, Islet cells as a component of pancreatic ductal neoplasms. I. Experimental study: ductular cells, including islet cell precursors, as primary progenitor cells of tumors, Am. J. Pathol., 90: 295.Google Scholar
  63. Pour, P., and Wilson, R. B., 1980, Experimental tumors of the pancreas, in: “Tumors of the Pancreas,” A. R. Moosa, ed., p. 37, Williams and Wilkins, Baltimore.Google Scholar
  64. Pour, P., Althoff, J., and Takahashi, M., 1977, Early lesions of pancreatic ductal carcinoma in the hamster model, Am. J. Pathol., 88: 291.PubMedGoogle Scholar
  65. Pour, P., Salmasi, S. Z., and Runge, R. G., 1979, Ductular origin of pancreatic cancer and its multiplicity in man comparable to experimentally induced tumores. A preliminary study, Cancer Lett., 6: 89.PubMedCrossRefGoogle Scholar
  66. Rappaport, A. M., 1979, Physioanatomical basis of toxic liver injury, in: “Toxic Injury of the Liver,” E. Farber and M. M. Fisher,.eds., p. 1, Marcel Dekker, New York.Google Scholar
  67. Redick, J. A., Kawabata, T. T., Guengerich, F. P., Krieter, P. A., Shires, T. K., and Baron, J., 1980, Distributions of monooxygenase components and epoxide hydratase within the livers of untreated male rats, Life Sci., 27: 2465.PubMedCrossRefGoogle Scholar
  68. Redick, J. A., Jakoby, W. B., and Baron, J., 1982, Immunohistochemical localization of glutathione S-transferases in livers of untreated rats, J. Biol. Chem., 257: 15200.PubMedGoogle Scholar
  69. Reid, W. D., Christie, B., Eichelbaum, M., and Krishner, G., 1971, 3Methylcholanthrene blocks hepatic necrosis induced by administration of bromobenzene or carbon tetrachloride, Exp. Mol. Pathol., 15: 363.CrossRefGoogle Scholar
  70. Reznik, G., Reznik-Schuller, H., Ward, J. M., and Stinson, S. F., 1980, Morphology of nasal cavity tumors in rats after chronic inhalation of 1,2-dibromo-3-chloropropane, Br. J. Cancer, 42: 772.PubMedCrossRefGoogle Scholar
  71. Scarpelli, D. G., Rao, M. S., Subbarao, V., Beversluis, M., Gurka, D. P., and Hollenberg, P. F., 1980, Activation of nitrosamines to mutagens by postmitochondrial fraction of hamster pancreas, Cancer Res., 40: 67.PubMedGoogle Scholar
  72. Scarpelli, D. G., Kokkinakis, D. M., Rao, M. S., Subbarao, V., Luetteke, N., and Hollenberg, P. F., 1982, Metabolism of the pancreatic carcinogen N-nitroso-2,6-dimethylmorpholine by hamster liver and component cells of pancreas, Cancer Res., 42: 5089.PubMedGoogle Scholar
  73. Slaga, T. J., ed., 1984, “Mechanisms of Tumor Promotion. Vol. H. Tumor Promotion and Skin Carcinogenesis,” CRC Press, Boca Raton.Google Scholar
  74. Smith, M. T., Redick, J. A., and Baron, J., 1983, Quantitative immunohistochemistry: a comparison of microdensitometric analysis of unlabeled antibody peroxidase-antiperoxidase staining and of microfluorometric analysis of indirect fluorescent antibody staining for nicotinamide adenosine dinucleotide phosphate (NADPH)-cytochrome c (P-450) reductase in rat liver, J. Histochem. Cytochem., 31: 1183.PubMedCrossRefGoogle Scholar
  75. Sorokin, S. P., 1970, The cells of the lung, in: “Morphology of Experimental Respiratory Carcinogenesis,” P. Nettesheim, M. G. Hanna, Jr., and J. W. Deatherage, eds., p. 3, U.S. At. Energy Comm., Oak Ridge.Google Scholar
  76. Sternberger, L. A., Hardy, P. H., Cuculis, J. J., and Meyer, H. G., 1970, The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes, J. Histochem. Cytochem., 18: 315.Google Scholar
  77. Taira, Y., Redick, J. A., Greenspan, P., and Baron, J., 1979, Immunohisto- chemical studies on electron transport proteins associated with cytochromes P-450 in steroidogenic tissues. II. Microsomal NADPHcytochrome c reductase in the rat adrenal, Biochim. Biophys. Acta, 583: 148.Google Scholar
  78. Taira, Y., Redick, J. A., and Baron, J., 1980a, An immunohistochemical study on the localization and distribution of NADPH-cytochrome c (P-450) reductase in rat liver, Mol. Pharmacol., 17: 374.PubMedGoogle Scholar
  79. Taira, Y., Greenspan, P., Kapke, G. F., Redick, J. A., and Baron, J., 1980b, Effects of phenobarbital, pregnenolone-16a-carbonitrile, and 3-methylcholanthrene pretreatments on the distribution of NADPHcytochrome c (P-450) reductase within the liver lobule, Mol. Pharmacol., 18: 304.Google Scholar
  80. Takahashi, M., Pour, P., Althoff, J., and Donnelly, T., 1977, Sequential alteration of the pancreas during carcinogenesis in Syrian golden hamsters by N-nitrosobis(2-oxopropyl)amine, Cancer Res., 37: 4602.PubMedGoogle Scholar
  81. Teel, R. W., and Douglas, W. H. J., 1980, Aryl hydrocarbon hydroxylase activity in type II alveolar lung cells, Experientia, 36: 107.PubMedCrossRefGoogle Scholar
  82. Tuchweber, G., Werringloer, J., and Kourounakis, P., 1974, Effect of phenobarbital or pregnenolone-16a-carbonitrile (PCN) pretreatment on acute carbon tetrachloride hepatotoxicity in rats, Biochem. Pharmacol., 23: 513.Google Scholar
  83. Vermorken, A. J. M., Goos, C. M. A. A., Roelofs, H. M. J., Henderson, P. Th., and Bloemendal, H., 1979, Metabolism of benzo[a]pyrene in isolated human scalp hair follicles, Toxicology, 14: 109.PubMedCrossRefGoogle Scholar
  84. Voigt, J. M., Guengerich, F. P., and Baron, J., 1985, Localization of a cytochrome P-450 isozyme (cytochrome P-450 PB-B) and NADPH-cytochrome P-450 reductase in rat nasal tissue, Cancer Lett., 27: 241.PubMedCrossRefGoogle Scholar
  85. Wattenberg, L. W., and Leong, J. L., 1962, Histochemical demonstration of reduced pyridine nucleotide dependent polycyclic hydrocarbon metabolizing systems, J. Histochem. Cytochem., 10: 412.CrossRefGoogle Scholar
  86. Wattenberg, L. W., and Leong, J. L., 1970, Benzpyrene hydroxylase activity in mouse skin, Proc. Am. Assoc. Cancer Res., 11: 81.Google Scholar
  87. Wiebkin, P., Schaeffer, B. K., Longnecker, D. S., and Curphey, T. J., 1984 Oxidative and conjugative metabolism of xenobiotics by isolated rat and hamster acinar cells, Drug Metab. Dispos., 12: 427.PubMedGoogle Scholar
  88. Wright, A. S., 1980, The role of metabolism in chemical mutagenesis and chemical carcinogenesis, Mutat. Res., 75: 215.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Jeffrey Baron
    • 1
  • Jeffrey M. Voigt
    • 1
  • Tyrone B. Whitter
    • 1
  • Thomas T. Kawabata
    • 1
  • Shirley A. Knapp
    • 1
  • F. Peter Guengerich
    • 2
  • William B. Jakoby
    • 3
  1. 1.The Toxicology Center, Department of PharmacologyUniversity of IowaIowa CityUSA
  2. 2.Center in Molecular Toxicology, Department of BiochemistryVanderbilt UniversityNashvilleUSA
  3. 3.Laboratory of Biochemistry and Metabolism, National Institute of Arthritis, Diabetes, and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations