Skip to main content

Identification of Intratissue Sites for Xenobiotic Activation and Detoxication

  • Chapter
Biological Reactive Intermediates III

Abstract

It is now apparent that the generation of reactive metabolites from a multitude of xenobiotics frequently preceeds the appearance of necrosis, mutagenesis, carcinogenesis, and other cytotoxicities (Mitchell et al., 1976; Boyd, 1980; Wright, 1980; Miller and Miller, 1981, 1982; Boyd and Statham, 1983). It is also evident, however, that xenobiotics that are biotransformed into reactive metabolites usually exert relatively selective toxic effects within most mammalian tissues, i.e., they often damage either a specific morphological cell type or groups of morphologically similar cells located within selected areas or regions of tissues (Mitchell et al., 1976; Rappaport, 1979; Boyd, 1980; Baron and Kawabata, 1983; Minchin and Boyd, 1983). Differential susceptibility of cells to toxicity that results as a consequence of the formation of reactive metabolites undoubtedly is related to differences in the ability of cells to both activate and detoxicate xenobiotics (Boyd, 1980; Baron and Kawabata, 1983; Minchin and Boyd, 1983). Primarily for this reason, the intratissue localizations and distributions of cytochrome P-450 isozymes, NADPH-cytochrome P-450 reductase, epoxide hydrolase, glutathione S-transferases, and other enzymes that participiate in the activation and detoxication of xenobiotics recently have come under intensive investigation. Such investigation however, has been hindered greatly by the heterogeneous nature of most mammalian tissues, as well as by the fact that morphologically similar cells, hepatocytes for example, can exhibit significant differences in their ability to metabolize xenobiotics (Wattenberg and Leong, 1962; Gangolli and Wright, 1971; Ji et al., 1981; Conway et al., 1982; Baron and Kawabata, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baron, J., and Kawabata, T. T., 1983, Intratissue distribution of activating and detoxicating enzymes, in: “Biological Basis of Detoxication,” J. Caldwell and W. B. Jakoby, eds., p. 105, Academic Press, New York.

    Google Scholar 

  • Baron, J., and Kawabata, T. T., 1985, Localization and distribution of carcinogen-metabolizing enzymes and benzo[a]pyrene hydroxylase activity within rat and hamster pancreas, in: “Experimental Pancreatic

    Google Scholar 

  • Carcinogenesis,“ D. G. Scarpelli, J. R. Reddy, and D. S. Longnecker, eds., CRC Press, Boca Raton.

    Google Scholar 

  • Baron, J., Redick, J. A., and Guengerich, F. P., 1978a, Immunohistochemical localizations of cytochromes P-450 in rat liver, Life Sci., 23: 2627.

    Article  PubMed  CAS  Google Scholar 

  • Baron, J., Redick, J. A., Greenspan, P., and Taira, Y., 1978b, Immunohisto-chemical localization of NADPH-cytochrome c reductase in rat liver, Life Sci., 22: 1097.

    Article  PubMed  CAS  Google Scholar 

  • Baron, J., Redick, J. A., and Guengerich, F. P., 1980, Immunohistochemical localization of epoxide hydratase in rat liver, Life Sci., 26: 489.

    Article  PubMed  CAS  Google Scholar 

  • Baron, J., Redick, J. A., and Guengerich, F. P., 1981, An immunohistochemical study on the localizations and distributions of phenobarbital-and 3- methylcholanthrene-inducible cytochromes P-450 within the livers of untreated rats, J. Biol. Chem., 256: 5931.

    PubMed  CAS  Google Scholar 

  • Baron, J., Redick, J. A., and Guengerich, F. P., 1982, Effects of 3-methyl-cholanthrene, 8-naphthoflavone, and phenobarbital on the 3-methylcholanthrene-inducible isozyme of cytochrome P-450 within centilobular, midzonal, and periportal hepatocytes, J. Biol. Chem., 257: 953.

    PubMed  CAS  Google Scholar 

  • Baron, J., Kawabata, T. T., Redick, J. A., Knapp, S. A., Wick, D. G., Wallace, R. B., Jakoby, W. B., and Guengerich, F. P., 1983, Localiza-tion of carcinogen-metabolizing enzymes in human and animal tissues, in: “Extrahepatic Drug Metabolism and Chemical Carcinogenesis,” J. Rydstrom, J. Montelius, and M. Bengtsson, eds., p. 73, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Baron, J., Kawabata, T. T., Knapp, S. A., Voigt, J. M., Redick, J. A., Jakoby, W. B., and Guengerich, F. P., 1984, Intrahepatic distribution of xenobiotic-metabolizing enzymes, in: “Foreign Compound Metabolism,” J. Caldwell and G. D. Paulson, eds., p. 17, Taylor and Francis, London.

    Google Scholar 

  • Bickers, D. R., and Kappas, A., 1980, The skin as a site of chemical metabolism, in: “Extrahepatic Metabolism of Drugs and Other Foreign Chemicals,” T. E. Gram, ed., p. 295, Spectrum Publications, New York.

    Google Scholar 

  • Black, O., and Stoming, T. A., 1983, Characterization of benzopyrene metabolism in rat pancreas, Cancer Lett., 18: 97.

    Article  PubMed  CAS  Google Scholar 

  • Black, O., Murrill, E., and Pallas, F., 1980, Pancreatic metabolism of benzo(a)pyrene in vitro and in vivo in the Long-Evans rat, Res. Commun. Chem. Pathol. Pharmacol., 29: 291.

    PubMed  CAS  Google Scholar 

  • Black, O., Murrill, E., and Fanska, C., 1981, Metabolism of 3-methylcholanthrene in rat pancreas, Dig. Dis. Sci., 26: 358.

    Article  PubMed  CAS  Google Scholar 

  • Bockman, D.E., 1981, Cells of origin of pancreatic cancer: experimental animal tumors related to human pancreas, Cancer, 47: 1528.

    Article  PubMed  CAS  Google Scholar 

  • Bockman, D. E., Black, O., Mills, L. R., Mainz, D. L., and Webster, P. D., 1976, Fine structure of pancreatic adenocarcinoma induced in rats by 7,12-dimethylbenz[a]anthracene, J. Natl. Cancer Inst., 57: 931.

    Google Scholar 

  • Bockman, D. E., Black, O., Mills, L. R., and Webster, P. D., 1978, Origin of tubular complexes developing during induction of pancreatic adenocarcinoma by 7,12-dimethylbenz(a)anthracene, Am. J. Pathol., 90: 645.

    PubMed  CAS  Google Scholar 

  • Boyd, M. R., 1977, Evidence for the Clara cell as a site of cytochrome P-450-dependent mixed-function oxidase activity in lung, Nature (London), 269: 713.

    Article  CAS  Google Scholar 

  • Boyd, M. R., 1980, Biochemical mechanisms in chemical-induced lung injury: roles of metabolic activation, CRC Crit. Rev. Toxicol., 7: 103

    Article  CAS  Google Scholar 

  • Boyd, M. R., and Statham, C. N., 1983,The effect of hepatic metabolism on the production and toxicity of reactive metabolites in extrahepatic organs, Drug Metab. Rev., 14: 35

    Article  PubMed  CAS  Google Scholar 

  • Brittebo, E. B., Castonguay, A., Furuya, K., and Hecht, S. S., 1983, Metabolism of tobacco-specific nitrosamines by cultured rat nasal mucosa, Cancer Res., 43: 4343

    PubMed  CAS  Google Scholar 

  • Butcher, E. 0.,1934,The hair cycles in the albino rat, Anat. Res., 61:5.

    Article  Google Scholar 

  • Chow, S. A., and Fischer, L. J., 1984, Alterations in rat pancreatic B-cell function induced by prenatal exposure to cyproheptadine, Diabetes, 33: 572

    Google Scholar 

  • Cohen, G. M., and Moore, B. P., 1976, Metabolism of [3H]benzo[a]pyrene by different portions of the respiratory tract, Biochem. Pharmacol.,25:1623.

    Google Scholar 

  • Conway, J. G., Kauffman, F. C., Ji, S., and Thurman, R. G., 1982, Rates of sulfation and glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule, Mol. Pharmacol., 22: 509

    PubMed  CAS  Google Scholar 

  • Devereux, T. R., and Fouts, J. R., 1981, Xenobiotic metabolism by alveolar type II cells isolated from rabbit lung, Biochem. Pharmacol.,30:1231.

    Article  PubMed  CAS  Google Scholar 

  • Devereux, T. R., Hook, G. E. R., and Fouts, J. R., 1979, Foreign compound metabolism by isolated cells from rabbit lung, Drug Metab. Dispos.,7:70.

    Google Scholar 

  • Devereux, T. R., Jones, K. G., Bend, J. R., Fouts, J. R., Statham, C. N., and Boyd, M. R., 1982, In vitro metabolic activation of the pulmonary toxin, 4-ipomeanol, in nonciliated bronchiolar epithelial (Clara) and alveolar type II cells isolated from rabbit lung, J. Pharmacol. Exp.Ther., 220:223.

    Google Scholar 

  • Dissin, J., Mills, L. R., Mains, D. L., Black, O., and Webster, P. D., 1975, Experimental induction of pancreatic adenocarcinomas in rats, J. Natl. Cancer Inst., 55: 857.

    Google Scholar 

  • Fjellstedt, T. A., Allen, R. H., Duncan, B. K., and Jakoby, W. B., 1973, Enzymatic conjugation of epoxides with glutathione, J. Biol. Chem., 248: 3702.

    Google Scholar 

  • Flaks, B., and Lucas, J., 1973, Persistent ultrastructural changes in pancreatic acinar cells induced by 2-acetylaminofluorene, Chem.-Biol. Interact., 6: 91.

    Article  PubMed  CAS  Google Scholar 

  • Flaks, B., Moore, M. A., and Flaks, A., 1981, Ultrastructural analysis of pancreatic carcinogenesis. IV. Pseudoductular transformation of acini in the hamster pancreas during N-nitroso-bis(2-hydroxypropyl)amine carcinogenesis, Carcinogenesis, 2: 1241.

    Article  PubMed  CAS  Google Scholar 

  • Flaks, B., Moore, M. A., and Flaks, A., 1982, Ultrastructural analysis of pancreatic carcinogenesis. VI. Early changes in hamster acinar cells induced by N-nitroso-bis(2-hydroxypropyl)amine, Carcinogenesis, 3: 1063.

    Article  PubMed  CAS  Google Scholar 

  • Gangolli, S., and Wright, M., 1971, The histochemical demonstration of aniline hydroxylase activity in rat liver, Histochem. J., 3: 107

    Article  PubMed  CAS  Google Scholar 

  • Gati, E., Calop, J. Y., and Lafaverges, F., 1973, Histochemical demonstration of the benzo(a)pyrene hydroxylase activity in animal skin, Ann. Histochem., 18: 311.

    CAS  Google Scholar 

  • Grasso, P., Williams, M., Hodgson, R., Wright, M. G., and Gangolli, S. D., 1971, The histochemical distribution of aniline hydroxylase activity in rat tissues, Histochem. J., 3: 117.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F. P., 1978, Separation and purification of multiple forms of microsomal cytochrome P-450. Partial characterization of three apparently homogeneous cytochromes P-450 prepared from livers of phenobarbital-and 3-methylcholanthrene-treated rats, J. Biol. Chem., 253: 7931.

    Google Scholar 

  • Guengerich, F. P., Wang, P., Mitchell, M. B., and Mason, P. S., 1979, Rat and human liver microsomal epoxide hydrolase. Purification and evidence for the existence of multiple forms, J. Biol. Chem., 254: 12248.

    CAS  Google Scholar 

  • Guengerich, F. P., Dannan, G. A., Wright, S. T., Martin, M. V., and Kaminsky, L. S., 1982a, Purification and characterization of liver microsomal cytochromes P-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or 6-naphthoflavone, Biochemistry, 21: 6019.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F. P., Dannan, G. A., Wright, S. T., Martin, M. V., and Kaminsky, L. S., 1982b, Purification and characterization of microsomal cytochromes P-450, Xenobiotica, 12: 701.

    Article  PubMed  CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J., and Jakoby, W. B., 1974, Glutathione Stransferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem., 249: 7130.

    PubMed  CAS  Google Scholar 

  • Hecht, S. S., Chen, C. B., Ohmori, T., and Hoffman, D., 1980, Comparative carcinogenicity in F344 rats of the tobacco-specific nitrosamines, N’-nitrosonornicotine and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-1butanone, Cancer Res., 40: 298.

    PubMed  CAS  Google Scholar 

  • Hsu, S. M., Raine, L., and Fanger, H., 1981, Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures, J. Histochem. Cytochem., 29: 577.

    Google Scholar 

  • Ichikawa, Y., and Yamano, T., 1967, Electron spin resonance of microsomal cytochromes. Correlation of the amount of CO-binding species with so-called microsomal Fex in microsomes of normal tissues and rat liver microsomes of sudan III-treated animals, Arch. Biochem. Biophys., 121: 742.

    Google Scholar 

  • Iqbal, Z. M., Varnes, M. E., Yoshida, A., and Epstein, S. S., 1977, Metabolism of benzo(a)pyrene by guinea pig pancreatic microsomes, Cancer Res., 37: 1011.

    PubMed  CAS  Google Scholar 

  • Ishii-Ohba, H., Guengerich, F. P., and Baron, J., 1984, Localization of epoxide-metabolizing enzymes in rat testis, Biochim. Biophys. Acta, 802: 326.

    Google Scholar 

  • Ji, S., Lemasters, J. J., and Thurman, R. G., 1981, A fluorometric method to measure sublobular rates of mixed-function oxidation in the hemoglobin-free perfused rat liver, Mol. Pharmacol., 19: 513.

    PubMed  CAS  Google Scholar 

  • Kahng, M. W., Smith, M. W., and Trump, B. F., 1981, Aryl hydrocarbon hydroxylase in human bronchial epithelium and blood monocyte, J. Natl. Cancer Inst., 66: 227.

    CAS  Google Scholar 

  • Kawabata, T. T., Guengerich, F. P., and Baron, J., 1981, An immunohisto- chemical study on the localization and distribution of epoxide hydrolase within livers of untreated rats, Mol. Pharmacol., 20: 709.

    CAS  Google Scholar 

  • Kawabata, T. T., Guengerich, F. P., and Baron, J., 1983, Effects of phenobarbital, trans-stilbene oxide, and 3-methylcholanthrene on epoxide hydrolase within centrilobular, midzonal, and periportal regions of rat liver, J. Biol. Chem., 258: 7767.

    PubMed  CAS  Google Scholar 

  • Kawabata, T. T., Wick, D. G., Guengerich, F. P., and Baron, J., 1984, Immunohistochemical localization of carcinogen-metabolizing enzymes within the rat and hamster exocrine pancreas, Cancer Res., 44: 215.

    PubMed  CAS  Google Scholar 

  • Lazarus, S. S., and Shapiro, S. H., 1972, Serial morphologic changes in rabbit pancreatic islet cells after streptozotocin, Lab. Invest., 27: 174.

    Google Scholar 

  • Lee, K. P., and Trochimowicz, H. J., 1982, Induction of nasal tumors in rats exposed to hexamethylphosphoramide by inhalation, J. Natl. Cancer Inst., 68: 157.

    PubMed  CAS  Google Scholar 

  • Levitt, M. H., Harris, C. C., Squire, R., Springer, S., Wenk, M., Mollelo, C., Thomas, D., Kingsbury, E., and Newkirk, C., 1977, Experimental pancreatic carcinogenesis. I. Morphogenesis of pancreatic adenocarcinoma in the Syrian golden hamster induced by N-nitroso-bis(2hydroxypropyl)amine, Am. J. Pathol., 88: 5.

    CAS  Google Scholar 

  • Mannervik, B., and Jensson, H., 1982, Binary combinations of four protein subunits with different catalytic specificities explain the relationship between six basic glutathione S-transferases in rat liver cytosol, J. Biol. Chem., 257: 9909.

    PubMed  CAS  Google Scholar 

  • Miller, E. C., and Miller, J. A., 1981, Mechanisms of chemical carcinogenesis, Cancer, 47: 1055.

    Article  PubMed  CAS  Google Scholar 

  • Miller, E. C., and Miller, J. A., 1982, Reactive metabolites as key intermediates in pharmacologic and toxicologic responses: examples from chemical carcinogenesis, in: “Biological Reactive Intermediates - II. Chemical Mechanisms and Biological Effects,” R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, G. G. Gibson, and C. M. Witmer, eds., p. 1, Plenum Press, New York.

    Google Scholar 

  • Minchin, R. F., and Boyd, M. R., 1983, Localization of metabolic activation and deactivation systems in the lung: significance to the pulmonary toxicity of xenobiotics, Ann. Rev. Pharmacol. Toxicol., 23: 217.

    Article  CAS  Google Scholar 

  • Mitchell, J. R., Nelson, S. D., Thorgeirsson, S. S., McMurtry, R. J., and Dybing, E., 1976, Metabolic activation: biochemical basis for many drug-induced liver injuries, in: “Progress in Liver Diseases,” H. Popper and F. Schaffner, eds., Vol. V, p. 259, Grune and Stratton, New York.

    Google Scholar 

  • Nakai, T., and Shubik, P., 1964, Autoradiographic localization of tissue-bound tritiated 7,12-dimethylbenz[a]anthracene in mouse skin 24 and 48 hours after single application, J. Natl. Cancer Inst., 33: 887.

    PubMed  CAS  Google Scholar 

  • Pannatier, A., Jenner, P., Testa, B., and Etter, J. C., 1978, The skin as a drug-metabolizing organ, Drug Metab. Rev., 8: 319.

    Article  PubMed  CAS  Google Scholar 

  • Pour, P., 1978, Islet cells as a component of pancreatic ductal neoplasms. I. Experimental study: ductular cells, including islet cell precursors, as primary progenitor cells of tumors, Am. J. Pathol., 90: 295.

    Google Scholar 

  • Pour, P., and Wilson, R. B., 1980, Experimental tumors of the pancreas, in: “Tumors of the Pancreas,” A. R. Moosa, ed., p. 37, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Pour, P., Althoff, J., and Takahashi, M., 1977, Early lesions of pancreatic ductal carcinoma in the hamster model, Am. J. Pathol., 88: 291.

    PubMed  CAS  Google Scholar 

  • Pour, P., Salmasi, S. Z., and Runge, R. G., 1979, Ductular origin of pancreatic cancer and its multiplicity in man comparable to experimentally induced tumores. A preliminary study, Cancer Lett., 6: 89.

    Article  PubMed  CAS  Google Scholar 

  • Rappaport, A. M., 1979, Physioanatomical basis of toxic liver injury, in: “Toxic Injury of the Liver,” E. Farber and M. M. Fisher,.eds., p. 1, Marcel Dekker, New York.

    Google Scholar 

  • Redick, J. A., Kawabata, T. T., Guengerich, F. P., Krieter, P. A., Shires, T. K., and Baron, J., 1980, Distributions of monooxygenase components and epoxide hydratase within the livers of untreated male rats, Life Sci., 27: 2465.

    Article  PubMed  CAS  Google Scholar 

  • Redick, J. A., Jakoby, W. B., and Baron, J., 1982, Immunohistochemical localization of glutathione S-transferases in livers of untreated rats, J. Biol. Chem., 257: 15200.

    PubMed  CAS  Google Scholar 

  • Reid, W. D., Christie, B., Eichelbaum, M., and Krishner, G., 1971, 3Methylcholanthrene blocks hepatic necrosis induced by administration of bromobenzene or carbon tetrachloride, Exp. Mol. Pathol., 15: 363.

    Article  CAS  Google Scholar 

  • Reznik, G., Reznik-Schuller, H., Ward, J. M., and Stinson, S. F., 1980, Morphology of nasal cavity tumors in rats after chronic inhalation of 1,2-dibromo-3-chloropropane, Br. J. Cancer, 42: 772.

    Article  PubMed  CAS  Google Scholar 

  • Scarpelli, D. G., Rao, M. S., Subbarao, V., Beversluis, M., Gurka, D. P., and Hollenberg, P. F., 1980, Activation of nitrosamines to mutagens by postmitochondrial fraction of hamster pancreas, Cancer Res., 40: 67.

    PubMed  CAS  Google Scholar 

  • Scarpelli, D. G., Kokkinakis, D. M., Rao, M. S., Subbarao, V., Luetteke, N., and Hollenberg, P. F., 1982, Metabolism of the pancreatic carcinogen N-nitroso-2,6-dimethylmorpholine by hamster liver and component cells of pancreas, Cancer Res., 42: 5089.

    PubMed  CAS  Google Scholar 

  • Slaga, T. J., ed., 1984, “Mechanisms of Tumor Promotion. Vol. H. Tumor Promotion and Skin Carcinogenesis,” CRC Press, Boca Raton.

    Google Scholar 

  • Smith, M. T., Redick, J. A., and Baron, J., 1983, Quantitative immunohistochemistry: a comparison of microdensitometric analysis of unlabeled antibody peroxidase-antiperoxidase staining and of microfluorometric analysis of indirect fluorescent antibody staining for nicotinamide adenosine dinucleotide phosphate (NADPH)-cytochrome c (P-450) reductase in rat liver, J. Histochem. Cytochem., 31: 1183.

    Article  PubMed  CAS  Google Scholar 

  • Sorokin, S. P., 1970, The cells of the lung, in: “Morphology of Experimental Respiratory Carcinogenesis,” P. Nettesheim, M. G. Hanna, Jr., and J. W. Deatherage, eds., p. 3, U.S. At. Energy Comm., Oak Ridge.

    Google Scholar 

  • Sternberger, L. A., Hardy, P. H., Cuculis, J. J., and Meyer, H. G., 1970, The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes, J. Histochem. Cytochem., 18: 315.

    Google Scholar 

  • Taira, Y., Redick, J. A., Greenspan, P., and Baron, J., 1979, Immunohisto- chemical studies on electron transport proteins associated with cytochromes P-450 in steroidogenic tissues. II. Microsomal NADPHcytochrome c reductase in the rat adrenal, Biochim. Biophys. Acta, 583: 148.

    Google Scholar 

  • Taira, Y., Redick, J. A., and Baron, J., 1980a, An immunohistochemical study on the localization and distribution of NADPH-cytochrome c (P-450) reductase in rat liver, Mol. Pharmacol., 17: 374.

    PubMed  CAS  Google Scholar 

  • Taira, Y., Greenspan, P., Kapke, G. F., Redick, J. A., and Baron, J., 1980b, Effects of phenobarbital, pregnenolone-16a-carbonitrile, and 3-methylcholanthrene pretreatments on the distribution of NADPHcytochrome c (P-450) reductase within the liver lobule, Mol. Pharmacol., 18: 304.

    Google Scholar 

  • Takahashi, M., Pour, P., Althoff, J., and Donnelly, T., 1977, Sequential alteration of the pancreas during carcinogenesis in Syrian golden hamsters by N-nitrosobis(2-oxopropyl)amine, Cancer Res., 37: 4602.

    PubMed  CAS  Google Scholar 

  • Teel, R. W., and Douglas, W. H. J., 1980, Aryl hydrocarbon hydroxylase activity in type II alveolar lung cells, Experientia, 36: 107.

    Article  PubMed  CAS  Google Scholar 

  • Tuchweber, G., Werringloer, J., and Kourounakis, P., 1974, Effect of phenobarbital or pregnenolone-16a-carbonitrile (PCN) pretreatment on acute carbon tetrachloride hepatotoxicity in rats, Biochem. Pharmacol., 23: 513.

    Google Scholar 

  • Vermorken, A. J. M., Goos, C. M. A. A., Roelofs, H. M. J., Henderson, P. Th., and Bloemendal, H., 1979, Metabolism of benzo[a]pyrene in isolated human scalp hair follicles, Toxicology, 14: 109.

    Article  PubMed  CAS  Google Scholar 

  • Voigt, J. M., Guengerich, F. P., and Baron, J., 1985, Localization of a cytochrome P-450 isozyme (cytochrome P-450 PB-B) and NADPH-cytochrome P-450 reductase in rat nasal tissue, Cancer Lett., 27: 241.

    Article  PubMed  CAS  Google Scholar 

  • Wattenberg, L. W., and Leong, J. L., 1962, Histochemical demonstration of reduced pyridine nucleotide dependent polycyclic hydrocarbon metabolizing systems, J. Histochem. Cytochem., 10: 412.

    Article  CAS  Google Scholar 

  • Wattenberg, L. W., and Leong, J. L., 1970, Benzpyrene hydroxylase activity in mouse skin, Proc. Am. Assoc. Cancer Res., 11: 81.

    Google Scholar 

  • Wiebkin, P., Schaeffer, B. K., Longnecker, D. S., and Curphey, T. J., 1984 Oxidative and conjugative metabolism of xenobiotics by isolated rat and hamster acinar cells, Drug Metab. Dispos., 12: 427.

    PubMed  CAS  Google Scholar 

  • Wright, A. S., 1980, The role of metabolism in chemical mutagenesis and chemical carcinogenesis, Mutat. Res., 75: 215.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Baron, J. et al. (1986). Identification of Intratissue Sites for Xenobiotic Activation and Detoxication. In: Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.O., Snyder, R. (eds) Biological Reactive Intermediates III. Advances in Experimental Medicine and Biology, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5134-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5134-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5136-8

  • Online ISBN: 978-1-4684-5134-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics