Hormonal Receptor Plasticity in the Brain as Shown by In Vitro Quantitative Autoradiography

  • William H. Rostène
  • Denis Hervé
  • Patrick Kitabgi
  • Jocelyne Magre
  • Alain Sarrieau
Part of the Biochemical Endocrinology book series (BIOEND)


Binding of neuroactive substances to specific receptor sites initiates sophisticated events which result in specific pharmacological, behavioral and physiological responses. The complex organization and the tissular heterogeneity of most of the endocrine organs have led to the development of new methodologies for the precise localization of these binding sites. Together with constant progress obtained for the biochemical characterization of those binding sites by conventional binding assays (mainly carried out on membrane preparations), recent autoradiographic techniques provide us with new interpretations about the numerous interactions underlying brain functions.


Substantia Nigra Vasoactive Intestinal Peptide Raphe Nucleus Median Raphe Quantitative Autoradiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baskin, D.G., Petracca, F., and Dorsa, D.M. 1983. Autoradiographic localization of specific binding sites for 3H-Arg8 vasopressin in the septum of the rat brain with tritium-sensitive film. Eur. J. Pharmac. 90: 155–157.CrossRefGoogle Scholar
  2. Baumgarten, H.G., Jenner, S., and Schlossberger, H.G. 1979. Serotonin neurotoxins: Effects of drugs on the destruction of brain serotoninergic, noradrenergic and dopaminergic axons in adult rat by intraventricularly, intracisternally or intracerebrally administered 5,7-dihydroxytryptamine and related compounds. In Neurotoxin, Fundamental and Clinical Advances, I.W. Chubb, L.B. Geffen eds, Adelaide University Union Press, Adelaide, pp. 221–226.Google Scholar
  3. Biegon, A., Bercowitz, H., and Samuel D. 1980. Serotonin receptor concentration during the estrous cycle of the rat. Brain Res. 187: 221–225.PubMedCrossRefGoogle Scholar
  4. Biegon, A., Rainbow, T.C., and Mc Ewen, B.S. 1982. Quantitative autoradiography of serotonin receptors in the rat brain. Brain Res. 242: 197–204.PubMedCrossRefGoogle Scholar
  5. Biegon, A., Terlou, M., Voorhuis, T.D., and De Kloet, E.R. 1984. Arginine-vasopressin binding sites in rat brain: A quantitative autoradiographic study. Neuroscience Lett. 44: 229–234.CrossRefGoogle Scholar
  6. Bosler, O., and Beaudet, A. 1985. VIP neurons as prime synaptic targets for serotoninergic afferents in rat suprachiasmatic nucleus: a combined radioimmunological and immunocytochemical study. J. Cytol., in press.Google Scholar
  7. Brunello, N., Barbacria, M.L., Chuang, D.M., and Costa, E. 1982. Down-regulation of beta adrenergic receptors following repeated desmethyl-imipramine injections: permissive role of serotoninergic axons. Neuropharmacol. 21: 1145–1149.CrossRefGoogle Scholar
  8. De Kloet, E.R., Kovacs, G.L., Szabo, G., Telegdy, G., Bohus, B., and Versteeg, D.H.G. 1982. Decreased serotonin turnover in the dorsal hippocampus of rat brain shortly after adrenalectomy: selective normalization after corticosterone substitution. Brain Res. 239: 659–663.PubMedCrossRefGoogle Scholar
  9. Fuxe, K., Agnati, L.F., Benfenati, F., Celani, M., Zini, I., Zoli, M., and Mutt, V. 1983. Evidence for the existence of receptor-receptor interactions of monoamine receptors by neuropeptides. J. Neural Transm. suppl. 18: 165–179.Google Scholar
  10. Govoni, S., Hong, J.S., Yang, H.Y.T., and Costa, E. 1980. Increase of neurotensin content elicited by neuroleptics in nucleus accumbens. J. Pharmacol, Exp. Ther. 215: 413–417.Google Scholar
  11. Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J. and Hamon, M. 1983. Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305: 140–142.PubMedCrossRefGoogle Scholar
  12. Hervé, D., Tassin, J.P., Studier, J.M., Dana, C., Kitabgi, P., Vincent, J.P., Glowinski, J., and Rostène, W. 1985. Dopaminergic control of 125I-neurotensin binding site density in corticolimbic structures of the rat brain. Proc. Natl. Acad. Sci. USA, in pressGoogle Scholar
  13. Héry, M., Faudon, M. and Héry, F. 1984. Effect of VIP on serotonin release in the suprachiasmatic area of the rat: Modulation by estradiol. Peptides 5: 313–317.PubMedCrossRefGoogle Scholar
  14. Hoover, D.B., Hancock, J.C. 1983. Autoradiographic localization of quinuclidinyl benzilate binding to rat pituitary gland. Neuroendocrinology 37: 297–301.PubMedCrossRefGoogle Scholar
  15. Hruska, R.E., and Silbergeld, E.K. 1980. Estrogen treatment enhances dopamine receptor sensitivity in the rat striatum. Eur. J. Pharmacol. 61: 397–400.PubMedCrossRefGoogle Scholar
  16. Israel, A., Correa, F.M.A., Niwa, M., Saavedra, J.M. 1984. Quantitative determination of angiotensin II binding sites in rat brain and pituitary gland by autoradiography. Brain Res. 322: 341–345.PubMedCrossRefGoogle Scholar
  17. Kiss, J., Léranth, Cs, and Halasz, B. 1984. Serotoninergic ending on VIP-neurons in the suprachiasmatic nucleus and on ACTH-neurons in the arcuate nucleus of the rat hypothalamus. A combination of high resolution autoradiography and electron microscopic immunocytochemistry. Neuroscience Lett. 44: 119–124.CrossRefGoogle Scholar
  18. Lightman, S.L., Ninkovic, M., Hunt, S.P., and Iversen L.L. 1983. Evidence for opiate receptors on pituicytes. Nature 305: 235–237.PubMedCrossRefGoogle Scholar
  19. Mazière, B., Loc’h, C., Hantraye, P., Guillon, R., Duquesnoy, N., Soussaline, F., Naquet, R., Comar, D., and Mazière, M. 1984. 76Brbromospiroperidol: A new tool for quantitative in vivo imaging of neuroleptic receptors. Life Sci. 35: 1349–1356.PubMedCrossRefGoogle Scholar
  20. Mc Ewen, B.S., 1982. Glucocorticoids and hippocampus: Receptors in search of a function. In: Current Topics in Neuroendocrinology, D. Ganten, D.W. Pfaff eds, Springer-Verlag, Berlin, pp. 1–22.Google Scholar
  21. Meibach, R.C., Maayani, S., and Green J.P. 1980. Characteriezation and radioautography of 3H-LSD by rat brain slices in vitro: the effect of 5-hydroxytryptamine. Eur. J. Pharmacol. 67: 371–382.PubMedCrossRefGoogle Scholar
  22. Morel, G., Leroux, P., and Pelletier, G. 1985. Localization and characterization of somatostatin-14 and somatostatin-28 receptors in the rat pituitary as studied by slide-mounted frozen sections. Neuropeptides 6: 41–52.PubMedCrossRefGoogle Scholar
  23. Nelson, D.L., Herbet, A., Bourgoin, S., Glowinski, J., and Hamon, M. 1978. Characteristics of central 5-HT receptors and their adoptive changes following intracerebral 5,7-dihydroxytryptamine administration in the rat. Mol. Pharmacol. 14: 983–995.PubMedGoogle Scholar
  24. Neraeroff, C.B., Youngblood, W.W., Manberg, P.J., Prange, A.J. Jr, and Kizer, J.S. 1983. Regional brain concentrations of neuropeptides in Huntington’s chorea and schizophrenia. Science 221: 972–975.CrossRefGoogle Scholar
  25. Palacios, J.M., Niehoff, D.L., and Kuhar, M.J. 1981. Receptor autoradiography with tritium-sensitive film: potential for computerized densitometry. Neuroscience Lett. 25: 101–105.CrossRefGoogle Scholar
  26. Peroutka, S.J., and Snyder, S.H. 1981. Two distinct serotonin receptors: regional variations in receptor binding in mammalian brain. Brain Res. 208: 339–347.PubMedCrossRefGoogle Scholar
  27. Pert, C.B., Kuhar, M.J., and Snyder, S.H. 1975. Autoradiographic localization of binding of the opiate receptor in rat brain. Life Sci. 16: 1849–1854.PubMedCrossRefGoogle Scholar
  28. Pfaff, D.W. 1968. Autoradiographic localization of radioactivity in rat brain after injection of tritiated sex hormones. Science 161: 1355–1356.PubMedCrossRefGoogle Scholar
  29. Quirion, R. 1983. Interactions between neurotensin and dopamine in the brain: an overview. Peptides 4: 609–615.PubMedCrossRefGoogle Scholar
  30. Rainbow, T.C., Bleisch, W.V., Biegon, A., and Mc Ewen, B.S. 1982. Quantitative densitometry of neurotransmitter receptors. J. Neurosci. Meth. 5: 127–138.CrossRefGoogle Scholar
  31. Rainbow, T.C., De Groff, V., Luine, V.N., and Mc Ewen, B.S. 1980. Estradiol 17 beta increases the number of muscarinic receptors in hypothalamic nuclei. Brain Res. 198: 239–243.PubMedCrossRefGoogle Scholar
  32. Reubi, J.C., and Maurer, R. 1985. Visualization of LHRH receptors in the rat brain. Eur. J. Pharmacol. 106: 453–454.CrossRefGoogle Scholar
  33. Rostène, W.H. 1984. Neurobiological and neuroendocrine functions of the vasoactive intestinal peptide (VIP). Prog. Neurobiology 22: 103–129.CrossRefGoogle Scholar
  34. Rostène, W., Besson, J., Broer, Y., Dussaillant, M., Grouselle, D., Kitabgi, P., Lhiaubet, A.M., Morgat, J.L., Sarrieau, A., and Vial, M. 1985a. Localisation par radioautographie des récepteurs des neuropeptides dans le système nerveux central. Ann. Endocrinol. 46: 27–33.Google Scholar
  35. Rostène, W.H., Fischette, C.T., Dussaillant, M., Mc Ewen, B.S. 1985b. Adrenal steroid modulation of vasoactive intestinal peptide effect on serotonin binding sites in the rat brain shown by in vitro quantitative autoradiography. Neuroendocrinology 40: 129–134.PubMedCrossRefGoogle Scholar
  36. Rostène, W.H., Fischette, C.T.,, Rainbow, T.C., and Mc Ewen, B.S. 1983. Modulation by vasoactive intestinal peptide of serotonin receptors in the dorsal hippocampus of the rat brain: An autoradiographic study. Neuroscience Lett. 37: 143–148.CrossRefGoogle Scholar
  37. Rostène, W.H., Morgat, J.L., Dussaillant, M., Rainbow, T.C., Sarrieau, A., Vial, M., and Rosselin, G. 1984. In vitro biochemical characterization and autoradiographic distribution of H-thyrotropin-releasing hormone binding sites in rat brain sections. Neuroendocrinology 39: 81–86.PubMedCrossRefGoogle Scholar
  38. Rostène, W., and Mourre, C. 1985c. Préparation de standards iodés pour radioautographie quantitative in vitro à l’aide d’un film sensible au tritium. C.R. Acad. Sci. Paris 301: 245–250.PubMedGoogle Scholar
  39. Rostène, W., Quirion, R., Beaudet, A., and Mazière, B. 1986. New brain imaging approaches for the visualization of receptors for chemical messengers and drugs. Médecine Sciences, in pressGoogle Scholar
  40. Rotsztejn, W.H., Besson, J., Briaud, B., Gagnant, L., Rosselin, G., and Kordon, C. 1980. Effect of steroids on vasoactive intestinal peptide in discrete brain regions and peripheral tissues. Neuroendocrinology 31: 287–291.PubMedCrossRefGoogle Scholar
  41. Sadoul, J.L., Checler, F., Kitabgi, P., Rostène, W., Javoy-Agid, F. and Vincent, J.P. 1984. Loss of high affinity neurotensin receptors in substantia nigra from Parkinsonian subjects. Biochem. Biophys. Res. Commun. 125: 395–404.PubMedCrossRefGoogle Scholar
  42. Sapolsky, R.M., Krey, L.C., and Mc Ewen, B.S. 1983a. Corticosterone receptors decline in a site-specific manner in the aged rat brain. Brain Res. 289: 235–240.PubMedCrossRefGoogle Scholar
  43. Sapolsky, R.M., Krey, L.C., and Mc Ewen, B.S. 1983b. The adrenocortical stress-response in the aged male rat: Impairment of recovery from stress. Exp. Gerontol. 18: 55–64.PubMedCrossRefGoogle Scholar
  44. Sarrieau, A., Vial, M., Philibert, D. and Rostène, W. 1984a. In vitro autoradiographic localization of H-corticosterone binding sites in rat hippocampus. Eur. J. Pharmacol. 98: 151–152.PubMedCrossRefGoogle Scholar
  45. Sarrieau, A., Vial, M., Philibert, D., Moguilewsky, M., Dussaillant, M., Mc Ewen, B.S., and Rostène, W. 1984b. In vitro binding of tritiated glucocorticoids directly on unfixed rat brain sections. J. Ster. Biochem. 20: 1233–1238.CrossRefGoogle Scholar
  46. Sokoloff, L. 1977. Relation between physiological function and energy metabolism in the central nervous system. J. Neurochem. 29: 13–26.PubMedCrossRefGoogle Scholar
  47. Stumpf, W.E. 1968. Estradiol-concentrating neurons: Topography in the hypothalamus by dry-mount autoradiography. Science 162: 1001–1003.PubMedCrossRefGoogle Scholar
  48. Tassin, J.P., Simon, H., Hervé, D., Blanc, G., Le Moal, M., Glowinski, J., and Bockaert, J. 1982. Non-dopaminergic fibres may regulate dopaminesensitive adenylate-cyclase in the prefrontal cortex and nucleus accumbens. Nature 295: 696–698.PubMedCrossRefGoogle Scholar
  49. Uhl, G.R., and Kuhar, M.J. 1984. Chronic neuroleptic treatment enhances neurotensin receptor binding in human and rat substantia nigra. Nature 309: 350–352.PubMedCrossRefGoogle Scholar
  50. Uhl, G.R., Whitehouse, P.J., Price, D.L., Tourtelotte, W.W., and Kuhar, M.J. 1984. Parkinson’s disease: depletion of substantia nigra neurotensin receptors. Brain Res. 308: 186–190.PubMedCrossRefGoogle Scholar
  51. Unnerstall, J.R., Niehoff, D.L., Kuhar, M.J., and Palacios, J.M. 1982. Quantitative receptor autoradiography using H-Ultrofilm: application to multiple benzodiazepine receptors. J Neurosci. Meth. 6: 59–73.CrossRefGoogle Scholar
  52. Wagner, H.R., Crutcher, K.A., and Davies, J.N. 1979. Chronic estrogen treatment decreases beta adrenergic responses in rat cerebral cortex. Brain Res. 171: 147–151.PubMedCrossRefGoogle Scholar
  53. Weissmann-Nanopoulos, D., Mach, E., Magre, J., Blaquiere, B., and Pujol, J.F. 1985. Evidence for 5-HT1 binding sites on 5-HT containing neurons in the raphe dorsalis and centralis of the rat brain. Neurochem. Intern., in pressGoogle Scholar
  54. Wynn, P.C., Hauger, R.L., Holmes, M.C., Millan, M.A., Catt, K.J., and Aguilera, G. 1984. Brain and pituitary receptors for corticotropin releasing factor: Localization and differential regulation after adrenalectomy. Peptides 5: 1077–1084.PubMedCrossRefGoogle Scholar
  55. Yamamura, H.I., Gee, K.W., Brinton, R.E., Davis, T.P., Mac Hadley, and Wamsley, J.K. 1983. Light microscopic autoradiographic visualization of H-arginine vasopressin binding sites in rat brain. Life Sci. 32: 1919–1924.PubMedCrossRefGoogle Scholar
  56. Young, W.S., III, and Kuhar, M.J. 1980. Serotonin receptor localization in rat brain by light microscopic autoradiography. Eur. J. Pharmacol. 62: 237–239.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • William H. Rostène
    • 1
  • Denis Hervé
    • 2
  • Patrick Kitabgi
    • 3
  • Jocelyne Magre
    • 1
  • Alain Sarrieau
    • 1
  1. 1.INSERM U. 55Hôpital Saint-AntoineParis Cedex 12France
  2. 2.INSERM U. 114Collège de FranceParis Cédex 05;France
  3. 3.Centre de Biochimie CNRSUniversité de NiceNice CédexFrance

Personalised recommendations