Neuronal Specific Gene Expression in the Murine Hippocampus

  • M. C. Wilson
  • P. L. Branks
  • G. A. Higgins
Part of the Biochemical Endocrinology book series (BIOEND)


The mammalian brain has been traditionally examined through combinations of anatomical, electrophysiological and pharmacological techniques. Together, these studies have correlated the phenotype of neurologic function, be it neuronal networks or choice of neuroactive transmitters, with the underlying structure of the brain. Another approach, which has been more recently explored, is the identification of specific gene products which may distinguish brain structures or neuronal groups defined by such classical studies. Implicit in this approach is the assumption that the differential expression of sets of genes help determine function in different neuronal cell populations.


Purkinje Cell Dentate Gyrus Pyramidal Neuron cDNA Probe Hippocampal Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S. and Evans, R. M., 1982 Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide productsd RNA in the mouse brain, Cell 8:193–150.Google Scholar
  2. Beckman, S. L., Chikaraishi, D. M., Deeb, S. S. and Sueoka, N., 1981 Sequence complexity of nuclear and cytoplasmic ribonucleic acids from clonal neurotumor cell lines and brain sections of the rat, Biochemistry 20:2684–2692.CrossRefGoogle Scholar
  3. Chikaraishi, D. M., 1979 Complexity of cytoplasmic polyadenylated and nonpolyadenylated rat brain ribonucleic acids, Biochemistry 18:3249–3256.PubMedCrossRefGoogle Scholar
  4. Chikaraishi, D. M., Deeb, S. S. and Sueoka, N. Sequence complexity of nuclear RNAs in adult rat tissues, Cell 13:111–120.Google Scholar
  5. Davis, M. M., Cohen, D. I., Nielsen, E. A., Steinmetz, M., Paul, W. E. and Hood, L., 1984 Cell-type specific cDNA probes and the murine I region: the localization and orientation of Ad, Proc. Natl. Acad. Sci. USA 81: 2194–2198.PubMedCrossRefGoogle Scholar
  6. Dworkin, M. B. and Dawid, I. B., 1980 Use of a cloned library for the study of abundant poly(A)+ RNA during Xenopus laevis development, Developmental Biol. 76:449–464.CrossRefGoogle Scholar
  7. Fonnum, F. and Walaas, I., 1978 The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in hippocampus and septum, J. Neurochem. 31:1173–1181.PubMedCrossRefGoogle Scholar
  8. Gee, C. E., Chen, C.-L. G., Roberts, J. L., Thompson, R. and Watson, S. J., 1983 Identification of proopiomelanocortin neurones in rat hypothalamus by in situ cDNA-mRNA hybridization, Nature 306: 374–376.PubMedCrossRefGoogle Scholar
  9. Gergen, J. P., Stern, R. H. and Wensink, P. C., 1979 Filter replicas and permanent collections of recombinant DNA plasmids, Nucleic Acids Res. 7:2115–2136.PubMedCrossRefGoogle Scholar
  10. Grouse, L. D., Schrier, B. K., Bennet, E. L., Rosenzweig M. R. and Nelson, P. G., 1978 Sequence diversity studies of rat brain RNA: effects of environmental complexity on rat brain RNA diversity, J. Neurochem. 30:191–203.PubMedCrossRefGoogle Scholar
  11. Grouse, L. D., Letendre, C. H. and Schrier, B. K., 1979 Sequence complexity and frequency distribution of poly(A)-containing messenger RNA sequences from the glioma cell line C6, J. Neurochemistry 33:583–585.CrossRefGoogle Scholar
  12. Harpold, M. M., Evans, R. M., Salditt-Georgieff, M. and Darnell, J. E., 1979 Production of mRNA in Chinese hamster cells: relationship of the rate of synthesis to the cytoplasmic concentration of nine specific mRNA sequences, Cell 17:1025–1035.PubMedCrossRefGoogle Scholar
  13. Harpold, M. M., Dobner, P. R., Evans, R. M. and Bancroft, F. C., 1978 Construction and identification by positive hybridization-translation of a bacterial plasmid containing a rat growth hormone structural gene sequence, Nucl. Acids Res. 5: 2039–2053.PubMedCrossRefGoogle Scholar
  14. Kaplan, B. B., Schacter, B. S., Osterburg, H. H., de Vellis, J. S. and Finch, C. E., 1978 Sequence complexity of polyadenylated RNA obtained from rat brain regions and cultured rat cells of neural origin, Biochemistry 17:5516–5524.PubMedCrossRefGoogle Scholar
  15. Levy, D. E., Lerner, R. A. and Wilson, M. C., 1982 A genetic locus regulates the expression of tissue specific mRNAs from multiple transcription units, Proc. Natl. Acad. Sci. 79:5823–5827.PubMedCrossRefGoogle Scholar
  16. McGeer, P. L., Hattor, T. and McGeer, t. G., 1975 Chemical and autoradiographic analysis of-aminobutyric acid transport in Purkinje cells of the cerebellum, Exp. Neurol. 47: 26–41.PubMedCrossRefGoogle Scholar
  17. McGinty, J. F., Henricksen, S. J., Goldstein, A,, Terenius, L. and Bloom, F. E., 1982 Dynorphin is contained within hippocampal mossy fibers: immunochemical alterations after kainic acid administration and colchicine-induced toxicity, Proc. Natl. Acad. Sci. USA 79:6747–6751.CrossRefGoogle Scholar
  18. McLaughlin, B. J., Wood, J. G., Saito, K. K., Barber, R., Vaughn, J. E. Roberts, E. and Wu, J. Y., 1974 The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum, Brain Res. 76:377–391.PubMedCrossRefGoogle Scholar
  19. Milner, R. J. and Sutcliffe, J. G., 1984 Gene expression in rat brain, Nuc. Acid Res. 11:5497–5520.CrossRefGoogle Scholar
  20. Milner, R. J., Lai, C., Nave, K.-A., Lenoir, D., Ogata, J., Bloom, F. E. and Sutcliffe, J. G., 1985 Nucleotide sequences of two mRNAs for rat brain myelin proteolipid protein, Cell in press.Google Scholar
  21. Nadler, J. V., Vaca, K. W., White, W. F., Lynch, G. S. and Cotman, C. W. Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents, Nature 260:538–540.Google Scholar
  22. Storm-Mathisen, J., 1977 Glutamic acid and excitory nerve endings: reduction of glutamic acid uptake after axotomy, Brain Res., 120:379–386.PubMedCrossRefGoogle Scholar
  23. Swanson, L. W., Taylor, T. J. and Thompson, R. F., 1982 Hippocampal long-term potentiation: mechanisms and implications for memory, Neurosciences Res. Program Bulletin 20: 624–634.Google Scholar
  24. Walaas, I., 1983 The hippocampus, in: Chemical Neuronanatomy, ed., P. C. Emsen, Raven Press, New York, pp. 337–358.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. C. Wilson
    • 1
  • P. L. Branks
    • 1
  • G. A. Higgins
    • 1
  1. 1.Department of Molecular BiologyResearch Institute of Scripps ClinicLa JollaUSA

Personalised recommendations