Advertisement

Measurement of Expression of the Vasopressin and Oxytocin Genes in Single Neurons by In Situ Hybridization

  • Joseph T. McCabe
  • Joan I. Morrell
  • Donald W. Pfaff
Part of the Biochemical Endocrinology book series (BIOEND)

Abstract

Methods required for optimization of the in situ hybridization technique vary according to the message, the probe, the tissue used, and the regulatory question asked. There are independent technical dimensions which must be considered for discovering how to optimize each methodological step for a given experiment. Here, we offer a general outline of technical parameters that should be considered to optimize signal. This review is offered as an overview of relevant procedural principles in light of the extensive parametric reports of in situ hybridization (Bauman, et al., 1984; Brahic & Haase, 1978; Cox, et al., 1984; Gee & Roberts, 1983; Godard & Jones, 1979; Haase, et al., 1984; Henderson, 1982; Lawrence & Singer, 1985; McCabe, et al., 1985b,c; Pardue & Gall, 1975; Schachter, et al., 1985). Various investigators often report seemingly contradictory findings: these may have their basis in what tissue and probe are under study.

Keywords

Supraoptic Nucleus Hypothalamic Paraventricular Nucleus Regulatory Question Magnocellular Neuron Prehybridization Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angerer, L. M., and Angerer, R. C., 1981, Detection of poly A+ RNA in sea urchin eggs and embryos by quantitative in situ hybridization, Nuc. Acids Res., 9:2819–2840.CrossRefGoogle Scholar
  2. Bauman, J. G. J., Van der Ploeg, M., and Van Duijn, P., 1984, Fluorescent hybridocytochemical procedures: DNA/RNA hybridization in situ, in: “Investigative Microtechniques in Medicine and Microbiology, vol. 1.,” J. Chayen and L. Bitensky, eds., pp. 41–88, Marcel Dekker, New York.Google Scholar
  3. Brahic, M., and Haase, A. T., 1978, Detection of viral sequences of low reiteration frequency by in situ hybridization, Proc. Natl. Acad. Sci. USA, 75:6125–6129.PubMedCrossRefGoogle Scholar
  4. Brahic, M., Haase, A. T., and Cash, E., 1984, Simultaneous in situ detection of viral RNA and antigens, Proc. Natl. Acad. Sci. USA, 81:5445–5448.PubMedCrossRefGoogle Scholar
  5. Burbach, J. P., De Hoop, M. J., Schmale, H., Richter, D., De Kloet, E. R., and Ten Haaf, J. A., 1984, Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei, Neuroendocrinology, 39:582–584.PubMedCrossRefGoogle Scholar
  6. Cox, K. H., DeLeon, D. V., Angerer, L. M., and Angerer, R. C., 1984, Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes, Dev. Biol., 101:485–502.PubMedCrossRefGoogle Scholar
  7. Gall, J. G., and Pardue, M. L., 1971, Formation and detection of RNA:DNA hybrid molecules in cytological preparations, Proc. Nat. Acad. Sci. USA, 63:378–383.CrossRefGoogle Scholar
  8. Gee, C. E., Chen, C.-L., Roberts, J. L., Thompson, R., and Watson, S. J., 1983, Identification of proopiomelanocortin neurones in rat hypothalamus by in situ cDNA-mRNA hybridization, Nature, 306:374–376.PubMedCrossRefGoogle Scholar
  9. Gee, C. E., and Roberts, J. L., 1983, In situ hybridization histochemistry: A technique for the study of gene expression in single cells, DNA, 2:157–163.PubMedCrossRefGoogle Scholar
  10. George, J. M., 1973, Localization in hypothalamus of increased incorporation of 3H-cytidine into RNA in response to oral hypertonic saline, Endocrinology, 92:1550–1555.PubMedCrossRefGoogle Scholar
  11. Gilbert, C. D., 1983, Microcircuits of the visual cortex, Ann. Rev. Neurosci., 6:217–247.PubMedCrossRefGoogle Scholar
  12. Godard, C., and Jones, K. W., 1979, Detection of AKR MULV-specific RNA in AKR mouse cells by in situ hybridization, Nuc. Acids Res., 6:2849–2861.CrossRefGoogle Scholar
  13. Griffin, W. S. T., Alejos, M., Nilaver, G., and Morrison, M. R., 1983, Brain protein and messenger RNA identification in the same cell, Brain Res. Bull., 10:507–601.CrossRefGoogle Scholar
  14. Haase, A. T., Brahic, M., Stowring, L., and Blum, H., 1984, Detection of viral nucleic acids by in situ hybridization, in: “Methods in Virology, vol. 7,” K. Maramorosch and H. Koprowski, eds., pp. 189–226, Academic Press, Orlando, FL.Google Scholar
  15. Henderson, A. S., 1982, Cytological hybridization to mammalian chromosomes, Intl. Rev. Cytol., 76:1–46.CrossRefGoogle Scholar
  16. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol., 160:106–154.PubMedGoogle Scholar
  17. Ivell, R., and Richter, D., 1984, Structure and comparison of the oxytocin and vasopressin genes from rat, Proc. Natl. Acad. Sci. USA, 81:2006–2010.PubMedCrossRefGoogle Scholar
  18. Lawrence, J. B., and Singer, R. H., 1985, Quantitative analysis of in situ hybridization for the detection of actin gene expression, Nuc. Acids Res., 13:1777–1799.CrossRefGoogle Scholar
  19. Majzoub, J. A., Rich, A., van Boom, J., and Habener, J. F., 1983, Vasopressin and oxytocin mRNA regulation in the rat assessed by hybridization with synthetic oligonucleotides, J. Biol. Chem., 258:14061–14064.PubMedGoogle Scholar
  20. McCabe, J. T., Morrell, J. I., and Pfaff, D. W., 1985a, Detection of rRNA and mRNA in rat hypothalamic neurons by in situ hybridization, Histochem. Soc. Abstr., in press.Google Scholar
  21. McCabe, J. T., Morrell, J. I., Ivell, R., Schmale, H., Richter, D., and Pfaff, D. W., 1985b, In situ hybridization to localize rRNA and mRNA in mammalian neurons, J. Histochem. Cytochem., in press.Google Scholar
  22. McCabe, J. T., Morrell, J. I., Richter, D., and Pfaff, D. W., 1985c, Localization of neuroendocrinologically-relevant RNA in brain by in situ hybridization, Frontiers of Neuroendocrinology, vol. 9, in press.Google Scholar
  23. Morrell, J. I., Krieger, M. S., and Pfaff, D. W., 1985, Quantitative autoradiographic analysis of estradiol retention by cells in the preoptic area, hypothalamus and amygdala, Exper. Brain Res., submitted.Google Scholar
  24. Nojiri, H., Sato, M., and Urano, A., 1985, In situ hybridization of the vasopressin mRNA in the rat hypothalamus by use of synthetic oligonucleotide probe, Neurosci. Lett., 58:101–105.PubMedCrossRefGoogle Scholar
  25. Pardue, M. L., and Gall, J. G., 1970, Chromosomal localization of mouse satellite DNA, Science, 168:1356–1358.PubMedCrossRefGoogle Scholar
  26. Pardue, M. L., and Gall, J. G., 1975, Nucleic acid and hybridization to the DNA of cytological preparations, in: “Meth. Cell Biol., vol. X,” D. M. Prescott, ed., pp. 1-16.Google Scholar
  27. Rakic, P. T., 1976, Local Circuit Neurons, MIT Press, Cambridge, MA.Google Scholar
  28. Rogers, A. W., 1973, Techniques of Autoradiography, 2nd Ed., Elsevier, Amsterdam.Google Scholar
  29. Schachter, B., Harlan, R., Pfaff, D., and Shivers, B., 1985, A practical guide to in situ hybridization, Histochem. Soc. Abstr., in press.Google Scholar
  30. Schmale, H., Heinsohn, S., and Richter, D., 1983, Structural organization of the rat gene for the arginine vasopressin-neurophysin precursor, EMBO J., 2:763–767.PubMedGoogle Scholar
  31. Sherman, T. G., and McKelvy, J. F., 1983, Cell-free biosynthesis of rat neurophysin polypeptides from poly(A)RNA isolated from individual hypothalamic nuclei, Neurosci. Abstr., 9:622.Google Scholar
  32. Sherman, T. G., Watson, S. J., Herbert, E., and Akil, H., 1984, The co-expression of dynorphin and vasopressin: An in situ hybridization and dot-blot analysis of mRNAs during stimulation, Neurosci. Abstr., 10:358.Google Scholar
  33. Siegel, S., 1956, Nonparametric Statistics, McGraw-Hill, New York.Google Scholar
  34. Shivers, B. D., Schachter, B., and Pfaff, D. W., 1985, In situ hybridization for the study of gene expression in the brain, Meth. Enzymol., in press.Google Scholar
  35. Uhl, G. R., Zingg, H. H., and Habener, J. F., 1985, Vasopressin mRNA in situ hybridization: Localization and regulation studied with oligonucleotide cDNA probes in normal and Brattleboro rat hypothalamus, Proc. Natl. Acad. Sci. USA., 82:5555–5559.PubMedCrossRefGoogle Scholar
  36. Wolfson, B., Manning, R. W., Davis, L. G., Arentzen, R., and Baldino, F. Jr., 1985, Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy, Nature, 315:59–61.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Joseph T. McCabe
    • 1
  • Joan I. Morrell
    • 1
  • Donald W. Pfaff
    • 1
  1. 1.Laboratory of Neurobiology & BehaviorThe Rockefeller UniversityNew YorkUSA

Personalised recommendations