Oxytocin and Vasopressin Secretion: New Perspectives

  • Dennis W. Lincoln
  • John A. Russell
Part of the Biochemical Endocrinology book series (BIOEND)


Six naturally occurring oxytocin-like and three vasopressin-like posterior pituitary hormones have been chemically characterized; all have nine amino-acid residues and six of these are consistent throughout. The posterior pituitary hormones of about 50 species have been fully characterized. This is a small sample, representing about 0.1% of all vertebrate species, but it has allowed a number of principles to be established (Acher, 1980). Most species have two posterior pituitary hormones of the oxytocin-vasopressin family; only the cyclostomes (lampreys) have one. This suggests that a gene duplication must have occurred before the evolution of fishes, some 450–500 million years ago. Point mutations then occurred separately within these two genes to give rise to two families of posterior pituitary hormones. The functions of these two hormones also underwent progressive change. The oxytocin-like peptides became linked primarily to reproduction and the vasopressin-like peptides to water and mineral metabolism. However, it remains impossible to determine the posterior pituitary peptides of extinct ancestral forms. A modern day North American opossum (Didelphis virginiana), often referred to as a living fossil, has been exposed to just as many years of evolution as any other mammalian species. One possible sequence for the derivation of the posterior pituitary hormones is presented in Figure 1. This is based on vasotocin, a hormone found in birds, reptiles, amphibia, fishes and cyclostomes.


Opioid Peptide Paraventricular Nucleus Median Eminence Arginine Vasopressin Supraoptic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe H., Inoue, M., Matsuo, T., and Ogata, N., 1983, The effects of vasopressin on electrical activity in the guinea-pig supraoptic nucleus in vitro, J. Physiol. (Lond.), 337:665.Google Scholar
  2. Acher, R., 1980, Molecular evolution of biologically active polypeptides, Proc. R. Soc. Lond. B., 210:21.PubMedCrossRefGoogle Scholar
  3. Aguilera, G., Wynn, P.C., Haugher, R.L., Holmes, M.C., Millan, M.A., Mendelsohn, F.A.O., Crewe, C., and Catt, K.J., 1984, Receptors and actions of angiotensin II (AII) and corticotropin-releasing factor (CRF) in specific regions of the central nervous system, Excerpta Medica (Int. Congress Series 655):609, Elsevier, Amsterdam.Google Scholar
  4. Akaishi, T., and Ellendorff, F., 1983, Electrical properties of para-ventricular neurosecretory neurones with and without recurrent inhibition, Brain Res., 262:151.PubMedCrossRefGoogle Scholar
  5. Andrew, R.D., and Dudek, F.E., 1984a, Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells, J. Neurophysiol., 51:552.PubMedGoogle Scholar
  6. Andrew, R.D., and Dudek, F.E., 1984b, Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus, J. Physiol. (Lond.), 353:171.Google Scholar
  7. Anhut, M., Meyer, D.K., and Knepel, W., 1983, Cholecystokinin-like immunoreactivity of rat medial basal hypothalamus: investigations on a possible hypophysiotropic function, Neuroendocrinology, 36:119.PubMedCrossRefGoogle Scholar
  8. Antoni, F.A., 1984, Novel ligand specificity of pituitary vasopressin receptors in the rat, Neuroendocrinology, 39:186.PubMedCrossRefGoogle Scholar
  9. Antoni, F.A., Holmes, M.C., and Jones, M.T., 1983, Oxytocin as well as vasopressin potentiate ovine CRF in vitro, Peptides, 4:411.PubMedCrossRefGoogle Scholar
  10. Baertschi, A.J., and Friedli, M., 1984, Novel anterior pituitary receptor(s) for neurohypophysial hormones, J. Steroid Biochem., 20(6B):1504.CrossRefGoogle Scholar
  11. Baertschi, A.J., Bény, J-L., Gähwiler, B.H., and Kolodziejczyk, E., 1983, Vasopressin, corticoliberins and the central control of ACTH secretion, Prog. Brain Res., 60:505.PubMedCrossRefGoogle Scholar
  12. Beinfeld, M.C., Meyer, D.K., and Brownstein, M.J., 1980, Cholecystokinin octapeptide in the rat hypothalamo — neurohypophysial system, Nature, 288:376.PubMedCrossRefGoogle Scholar
  13. Belin, V., Moos, F., and Richard, Ph., 1985, Synchronization of oxytocin cells in the hypothalamic and supraoptic nuclei in suckled rats: direct proof with paired extracellular recordings, Ex. Brain Res., 57:201.Google Scholar
  14. Bicknell, R.J., and Leng, G., 1981, Relative efficiency of neural firing patterns for vasopressin release in vitro, Neuroendocrinology, 33:295.PubMedCrossRefGoogle Scholar
  15. Bicknell, R.J., and Leng, G., 1982a, Enkephalin analogue inhibits oxytocin secretion from the rat neurohypophysis, J. Physiol. (Lond.), 332:87P.Google Scholar
  16. Bicknell, R.J., and Leng, G., 1982b, Endogenous opiates regulate oxytocin but not vasopressin secretion from the neurohypophysis, Nature, 298:161.PubMedCrossRefGoogle Scholar
  17. Bicknell, R.J., Brown, D., Chapman, C., Hancock, P.D., and Leng, G., 1984a, Reversible fatigue of stimulus secretion coupling in the rat neurohypophysis, J. Physiol. (Lond.), 348:601.Google Scholar
  18. Bicknell, R.J., Leng, G., Lincoln, D.W., and Russell, J.A., 1984b, Activation of oxytocin neurones following naloxone administration to rats treated chronically with intracerebroventricular (i.c.v.) morphine., J. Physiol. (Lond.), 357:97P.Google Scholar
  19. Bicknell, R.J., Chapman, C., Leng, G., and Russell, J.A., 1985a, Vasopressin release following naloxone administration to rats treated chronically with intracerebroventricular (i.c.v.) morphine, J. Physiol. (Lond.), 364:61P.Google Scholar
  20. Bicknell, R.J., Chapman, C., Leng, G., and Russell, J.A., 1985b, Chronic morphine exposure and oxytocin neurones in rats: lack of both morphine dependence and cross-tolerance to endogenous opioids in the neurohypophysis, J. Physiol. (Lond.), 361:32P.Google Scholar
  21. Bicknell, R.J., Chapman, C., and Leng, G., 1985c, Effects of opioid agonists and antagonists on oxytocin and vasopressin release in vitro, Neuroendocrinology, 41:142.PubMedCrossRefGoogle Scholar
  22. Blount, C.A., and Leng, G., 1985, Synaptic excitation and inhibition in the lateral hypothalamus following stimulation of the neural stalk in the rat, J. Physiol. (Lond.), 361:30P.Google Scholar
  23. Bourque, C.W., and Renaud, L.P., 1985a, Calcium-dependent action potentials in rat supraoptic neurosecretory neurones recorded in vitro, J. Physiol. (Lond.), 363:419.Google Scholar
  24. Bourque, C.W., and Renaud, L.P., 1985b, Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro, J. Physiol. (Lond.), 363:429.Google Scholar
  25. Bruhn, T.O., Plotsky, P.M., and Vale, W.W., 1984a, Effect of paraventricular lesions on corticotropin-releasing factor (CRF)-like immuno-reactivity in the stalk-median eminence: studies on the adrenocorticotropin response to ether stress and exogenous CRF, Endocrinology, 114:57.PubMedCrossRefGoogle Scholar
  26. Bruhn, T.O., Sutton, S.W., and Vale, W.W., 1984b, Corticotropin-releasing factor (CRF) stimulates oxytocin secretion into systemic circulation, Excerpta Medica (Int. Congress Series 652):464, Elsevier, Amsterdam.Google Scholar
  27. Buckingham, J.C., 1985, Two distinct corticotrophin releasing activities of vasopressin, Br. J. Pharmacol., 84:213.PubMedGoogle Scholar
  28. Burlet, A., Tonon, M-C., Tankosic, P., Coy, D., and Vaudry, H., 1983, Comparative immunocytochemical localization of corticotropin releasing factor (CRF-41) and neurohypophysial peptides in the brain of Brattleboro and Long-Evans rats, Neuroendocrinology, 37:64.PubMedCrossRefGoogle Scholar
  29. Chapman, C., Hatton, G.I., Ho, Y.W., Mason, W.T., and Robinson, I.C.A.F., 1983, Release of oxytocin (OXT) and vasopressin (AVP) from slices of guinea-pig hypothalamus containing supraoptic or paraventricular nucleus, J. Physiol. (Lond.), 343:40P.Google Scholar
  30. Chauvet, M.-T., Colne, T., Hurpet, D., Chauvet, J., and Acher, R., 1983, A multigene family for the vasopressin-like hormones? Identification of mesotocin, lysipressin and phenypressin in Australian macropods. Biochem. Biophys. Res. Comm., 116:258.PubMedCrossRefGoogle Scholar
  31. Chauvet, J., Hurpet, D., Michel, G., Chauvet, M.-T., and Acher, R., 1984, Two multigene families for marsupial neurohypophysial hormones? Identification of oxytocin, mesotocin, lysipressin and arginine vasopressin in the North American opossum (Didelphis virginiana), Biochem. Biophys. Res. Comm., 123:306.PubMedCrossRefGoogle Scholar
  32. Chauvet, J., Hurpet, D., Michel, G., Chauvet, M.-T., Carrick, F.M., and Acher, R., 1985, The neurohypophysial hormones of the egg-laying mammals: identification of arginine vasopressin in the platypus (Ornithorhynchus anatinus), Biochem. Biophys, Res. Comm., 127:277.CrossRefGoogle Scholar
  33. Clarke, G., and Patrick, G., 1983, Differential inhibitory action by morphine on the release of oxytocin and vasopressin from the isolated neural lobe, Neurosci. Lett., 39:175.PubMedCrossRefGoogle Scholar
  34. Clarke, G., and Wright, D.M., 1984, A comparison of analgesia and suppression of oxytocin release by opiates, Br. J. Pharmacol., 83:799.PubMedGoogle Scholar
  35. Clarke, G., Wood, P., Merrick, L., and Lincoln, D.W., 1979, Opiate inhibition of peptide release from the neurohumoral terminals of hypothalamic neurones, Nature, 282:746.PubMedCrossRefGoogle Scholar
  36. Cobbett, P., Smithson, K.G., and Hatton, G.I., 1984, Phasic neurons of rat hypothalamic paraventricular nucleus are immunoreactive to vasopressin but not oxytocin-associated neurophysin antiserum, Soc. Neurosci. Abstr., 10:609.Google Scholar
  37. Coghlan, J.P., Aldred, P., Butkus, A., Crawford, R.J., Darby, I.A., Fernley, R.T., Haralambidis, J., Hudson, P.J., Mitri, R., Niall, H.D., Penschow, J.D., Roche, P.J., Scanion, D.B., and Tregear, G.W., 1984, Hybridization histochemistry, Excerpta Medica (Int. Congress Series 655):18, Elsevier, Amsterdam.Google Scholar
  38. Cone, R.I., Weber, E., Barchas, J.D., and Goldstein, A., 1983, Regional distribution of dynorphin and neo-endorphin peptides in rat brain, spinal cord, and pituitary, J. Neurosci., 3:2146.PubMedGoogle Scholar
  39. Cutting, R., Fitzsimons, N., Gosden, R.G., Humphreys, E.M., and Russell, J.A., 1985, Evidence that morphine interrupts parturition in rats by inhibiting oxytocin secretion, J. Physiol. (Lond.), Proceedings, September, 1985:In press.Google Scholar
  40. Deschenes, R.J., Lorenz, L.J., Haun, R.S., Roos, B.A., Collier, K.J., and Dixon, J.E., 1984, Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin, Proc. Natl. Acad. Sci. USA., 81:726.PubMedCrossRefGoogle Scholar
  41. Deschenes, R.J., Haun, R.S., Funckes, C.L. and Dixon, J.E., 1985, A gene encoding rat cholecystokinin. Isolation, nucleotide sequence, and promoter activity, J. Biol. Chem., 260:1280.PubMedGoogle Scholar
  42. Deschepper, C., Lotstra, F., Vandesande, F., and Vanderhaeghen, J-J., 1983, Cholecystokinin varies in the posterior pituitary and external median eminence of the rat according to factors affecting vasopressin and oxytocin, Life Sci., 32:2571.PubMedCrossRefGoogle Scholar
  43. Dierickx, K., 1980, Immunocytochemical localization of the vertebrate cyclic nonapeptide neurohypophyseal hormones and neurophysins, Int. Rev. Cytol., 62:119.PubMedCrossRefGoogle Scholar
  44. Dreifuss, J.J., Tribollet, E., Baertschi, A.J., and Lincoln, D.W., 1976, Mammalian endocrine neurones: control of phasic activity by antidromic action potentials, Neurosci. Lett., 3:281.PubMedCrossRefGoogle Scholar
  45. Dreyfuss, F., Burlet, A., Tonon, M.C., and Vaudry, H., 1984, Comparative immunoelectron microscopic localization of corticotropin-releasing factor (CRF-41) and oxytocin in the rat median eminence, Neuroendocrinology, 39:284.PubMedCrossRefGoogle Scholar
  46. Dutton, A., and Dyball, R.E.J., 1979, Phasic firing enhances vasopressin release from the rat neurohypophysis, J. Physiol., 290:433.PubMedGoogle Scholar
  47. Faris, P.L., Komisaruk, B.R., Watkins, L.R., and Mayer, D.J., 1983, Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia, Science, 219:310.PubMedCrossRefGoogle Scholar
  48. Freund-Mercier, M.J., and Richard, Ph., 1984, Electrophysiological evidence for the facilitatory control of oxytocin neurones by oxytocin during suckling in the rat, J. Physiol., 352:447.PubMedGoogle Scholar
  49. Furutani, Y., Morimoto, Y., Shibahara, S., Noda, M., Takahashi, H., Hirose, T., Asai, M., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1983, Cloning and sequence analysis of cDNA for ovine corticotropin-releasing factor precursor, Nature, 301:537.PubMedCrossRefGoogle Scholar
  50. Gerstberger, R., and Barden, N., 1984, Dynorphin (1–8) binds to opiate-kappa-receptors in the neurohypophysis and is involved in the regulation of vasopressin release, Excerpta Medica (Int. Congress Series 652):631, Elsevier, Amsterdam.Google Scholar
  51. Gibbs, D.M., 1984a, High concentrations of oxytocin in hypophysial portal plasma, Endocrinology, 114:1216.PubMedCrossRefGoogle Scholar
  52. Gibbs, D.M., 1984b, Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress, Life Sci., 35:487.PubMedCrossRefGoogle Scholar
  53. Gibbs, D.M., 1985, Measurement of hypothalamic corticotrophin-releasing — factors in hypophyseal portal blood, Fed. Proc., 44:203.PubMedGoogle Scholar
  54. Gibbs, D.M., Vale, W., Rivier, J., and Yen, S.S.C., 1984, Oxytocin potentiates the ACTH-releasing activity of CRF(41) but not vasopressin, Life Sci., 34:2245.PubMedCrossRefGoogle Scholar
  55. Gillies, G., Puri, A., Hodgkinson, S., and Lowry, P.J., 1984, Involvement of rat corticotrophin-releasing factor-41-related peptide and vasopressin adrenocorticotrophin-releasing activity from superfused rat hypothalami in vitro, J. Endocrinol., 103:25.PubMedCrossRefGoogle Scholar
  56. Giraud, P., Castanas, E., Patey, G., Oliver, C., Rossier, J., 1983, Regional distribution of methionine-enkephalin-Arg6-Phe7 in the rat brain: comparative study with the distribution of other opioid peptides, J. Neurochem., 41:154.PubMedCrossRefGoogle Scholar
  57. Grell, S., Christensen, J.D., and Fjalland, B., 1985, Morphine anti-diuresis in conscious rats: contribution of vasopressin and blood pressure, Acta Pharmacol. Toxicol. (Copenh.), 56:38.CrossRefGoogle Scholar
  58. Haldar, J., Hoffman, D.L., and Zimmerman, E.A., 1982, Morphine, beta-endorphin and D-Ala2 met-enkephalin inhibit oxytocin release by acetylcholine and suckling, Peptides, 3:663.PubMedCrossRefGoogle Scholar
  59. Harris, G.W., Manabe, Y., and Ruf, K.B., 1969, A study of the parameters of electrical stimulation of unmyelinated fibres in the pituitary stalk, J. Physiol. (Lond.), 203:67.Google Scholar
  60. Hartman, R., Miller, D., Rosella-Dampman, L., Emmert, S., and Summy-Long, J., 1984, Role for endogenous opioid peptides in regulating oxytocin release at parturition, J. Steroid Biochem., 20(6B):1503.Google Scholar
  61. Hatton, G.I., 1984, Hypothalamic neurobiology, in: “Brain Slices”, R. Dingledine, ed., Plenum, New York.Google Scholar
  62. Hatton, G.I., Ho, Y.W., and Mason, W.T., 1983, Synaptic activation of phasic bursting in rat supraoptic nucleus neurones recorded in hypothalamic slices, J. Physiol. (Lond.), 345:297.Google Scholar
  63. Ishikawa, S., and Schrier, R.W., 1982, Evidence for a role of opioid peptides in the release of arginine vasopressin in the conscious rat, J. Clin. Invest., 69:666.PubMedCrossRefGoogle Scholar
  64. Itoh, S., Katsuura, G., Yoshikawa, K., and Rehfeld, J.F., 1985, Potentiation of β-endorphin effects by cholecystokinin antiserum in rats, Can. J. Physiol. Pharmacol., 63:81.PubMedCrossRefGoogle Scholar
  65. Ivell, R., and Richter, D., 1984, Structure and comparison of the oxytocin and vasopressin genes from rat, Proc. Natl. Acad. Sci. USA, 81:2006.PubMedCrossRefGoogle Scholar
  66. Iversen, L.L., Iversen, S.D., and Bloom, F.E., 1980, Opiate receptors influence vasopressin release from nerve terminals in rat neurohypophysis, Nature, 284:350.PubMedCrossRefGoogle Scholar
  67. Juss, T.S., and Wakerley, J.B., 1981, Mesencephalic areas controlling pulsatile oxytocin release in the suckled rat, J. Endocrinol., 91:233.PubMedCrossRefGoogle Scholar
  68. Keil, L.C., Rosella-Dampman, L.M., Emmert, S., Chee, O., and Summy-Long, J.Y., 1984, Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin, Brain Res., 297:329.PubMedCrossRefGoogle Scholar
  69. Kiss, J.Z., Mezey, E., and Skirboll, L., 1984a, Corticotropin-releasing factor-immunoreactive neurones of the paraventricular nucleus become vasopressin positive after adrenalectomy, Proc. Natl. Acad. Sci. USA, 81:1854.PubMedCrossRefGoogle Scholar
  70. Kiss, J.Z., Williams, T.H., and Palkovits, M., 1984b, Distribution and projections of cholecystokinin-immunoreactive neurons in the hypothalamic paraventricular nucleus of rat, J. Comp. Neurol., 227:173.PubMedCrossRefGoogle Scholar
  71. Knepel, W., Nutto, D., and Meyer, D.K., 1983, Naloxone increases vasopressin secretion from the neurointermediate lobe of the hypophysis of the rat: search for the endogenous agonist, Life Sci., 33, Suppl. 1:499.PubMedCrossRefGoogle Scholar
  72. Knepel, W., Homolka, L., Vlaskovska, M., and Nutto, D., 1984a, Stimulation of adrenocorticotropin/beta-endorphin release by synthetic ovine corticotropin-releasing factor in vitro. Enhancement by various vasopressin analogs, Neuroendocrinology, 38:344.PubMedCrossRefGoogle Scholar
  73. Knepel, W., Homolka, L., Vlaskovska, M., and Nutto, D., 1984b, In vitro adrenocorticotropin/β-endorphin-releasing activity of vasopressin analogs is related neither to pressor nor to antidiuretic activity, Endocrinology, 114:1797.PubMedCrossRefGoogle Scholar
  74. Lang, R.E., Rascher, W., Heil, J., Unger, Th., Wiedemann, G., and Ganten, D., 1981, Angiotensin stimulates oxytocin release, Life Sci., 29:1425.PubMedCrossRefGoogle Scholar
  75. Lang, R.E., Heil, J.W.E., Ganten, D., Hermann, K., Unger, T., and Rascher, W., 1983, Oxytocin unlike vasopressin is a stress hormone in the rat, Neuroendocrinology, 37:314.PubMedCrossRefGoogle Scholar
  76. Leng, G., 1981, The effects of neural stalk stimulation upon firing patterns in rat supraoptic neurones, Exp. Brain Res., 41:135.PubMedCrossRefGoogle Scholar
  77. Leng, G., 1982, Lateral hypothalamic neurones: osmosensitivity and the influence of activating magnocellular neurosecretory neurones, J. Physiol., 326:35.PubMedGoogle Scholar
  78. Leng, G., and Dyball, R.E.J., 1983, Intercommunication in the rat supraoptic nucleus, Q. J. Exp. Physiol., 68:493.PubMedGoogle Scholar
  79. Leng, G., and Mason, W.T., 1982, Influence of vasopressin upon firing patterns of supraoptic neurons: a comparison of normal and Brattleboro rats, Ann. N.Y. Acad. Sci., 394:153.PubMedCrossRefGoogle Scholar
  80. Leng, G., Mason, W.T., and Dyer, R.G., 1982, The supraoptic nucleus as an osmoreceptor, Neuroendocrinology, 34:75.PubMedCrossRefGoogle Scholar
  81. Leng, G., Dyball, R.E.J., and Mason, W.T., 1985a, Electrophysiology of osmoreceptors, in: “Vasopressin”, R.W. Schrier, ed., Raven Press, New York.Google Scholar
  82. Leng, G., Mansfield, S., Bicknell, R.J., Dean, A.D.P., Ingram, C.D., Marsh, M.I.C., Yates, J.O., and Dyer, R.G., 1985b, Central opioids: a possible role in parturition?. J. Endocrinol., 106:219.PubMedCrossRefGoogle Scholar
  83. Léránth, C.S., Záborsky, L., Marton, J., and Palkovits, M., 1975, Quantitative studies on the supraoptic nucleus in the rat. I. Synaptic organization, Exp. Brain Res., 22:509.PubMedCrossRefGoogle Scholar
  84. Lightman, S.L., Iversen, L.L., and Forsling, M.L., 1982, Dopamine and [d-Ala2, d-Leu5] enkephalin inhibit the electrically stimulated neurohypophyseal release of vasopressin in vitro: evidence for calcium-dependent opiate action, J. Neurosci., 2:78.PubMedGoogle Scholar
  85. Lightman, S.L., Ninkovic, M., Hunt, S.P., and Iversen, L.L., 1983, Evidence for opiate receptors on pituicytes, Nature (Lond.), 305:235.CrossRefGoogle Scholar
  86. Lincoln, D.W., 1974, Dynamics of oxytocin secretion, in: “Neurosecretion — the final neuroendocrine pathway”, F. Knowles and L. Vollrath, eds., Springer-Verlag, Heidelberg.Google Scholar
  87. Lincoln, D.W., and Wakerley, J.B., 1974, Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin, J. Physiol. (Lond.), 242:533.Google Scholar
  88. Lincoln, D.W., and Russell, J.A., 1985, The electrophysiology of magnocellular oxytocin neurons, in: “Oxytocin: Clinical and Laboratory Studies”, J.A. Amico and A.G. Robinson, eds., Elsevier, New York.Google Scholar
  89. Linton, E.A., Tilders, F.J.H., Hodgkinson, S., Berkenbosch, F., Vermes, I., and Lowry, P.J., 1985, Stress-induced secretion of adrenocorticotropin in rats is inhibited by administration of antisera to ovine corticotropin-releasing factor and vasopressin, Endocrinology, 116:966.PubMedCrossRefGoogle Scholar
  90. Marley, P.D., Lightman, S.L., Forsling, M.L., Todd, K., Goedert, M., Rehfeld, J.F., and Emson, P.C., 1984, Localization and actions of cholecystokinin in the rat pituitary neurointermediate lobe, Endocrinology, 114:1902.PubMedCrossRefGoogle Scholar
  91. Martin, R., Geis, R., Holl, R., Schäfer, M., and Voigt, K.H., 1983a, Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: immunoreactive methionine5-enkephalin, Ieucine5-enkephalin and cholecystokinin-like substances, Neuroscience, 8:213.PubMedCrossRefGoogle Scholar
  92. Martin, R., Moll, U., and Voigt, K.H., 1983b, An attempt to characterize by immunocytochemical methods the enkephalin-like material in oxytocin endings of the rat neurohypophysis, Life Sci., 33, Suppl. 1:69.PubMedCrossRefGoogle Scholar
  93. Mason, W.T., 1980, Supraoptic neurones of rat hypothalamus are osmosensitive, Nature, 287:154.PubMedCrossRefGoogle Scholar
  94. Mason, W.T., and Leng, G., 1984, Complex action potential waveform recorded from supraoptic and paraventricular neurones of the rat: evidence for sodium and calcium spike components at different membrane sites, Exp. Brain Res., 56:135.PubMedCrossRefGoogle Scholar
  95. Mason, W.T., Ho, Y.W., Eckenstein, F., and Hatton, G.I., 1983, Mapping of cholinergic neurones associated with rat supraoptic nucleus: combined immunocytochemical and histochemical identification, Brain Res. Bull., 11:617.PubMedCrossRefGoogle Scholar
  96. Mason, W.T., Ho, Y.W., and Hatton, G.I., 1984, Axon collaterals of supraoptic neurones: anatomical and electrophysiological evidence for their existence in the lateral hypothalamus, Neuroscience, 11:169.PubMedCrossRefGoogle Scholar
  97. Matsumura, M., Yamanoi, A., Yamamoto, S., Mori, H., and Saito, S., 1984, In vivo and in vitro effects of cholecystokinin octapeptide on the release of growth hormone in rats, Horm. Metab. Res., 16:626.PubMedCrossRefGoogle Scholar
  98. Matsuo, H., 1984, Neo-endorphins and dynorphins processed out of proenkephalin B, Excerpta Medica (Int. Congress Series 655):637, Elsevier, Amsterdam.Google Scholar
  99. Maysinger, D., Vermes, I., Tilders, F., Seizinger, B.R., Gramsch, C., Höllt, V., and Herz, A., 1984, Differential effects of various opioid peptides on vasopressin and oxytocin release from the rat pituitary in vitro, Naunyn Schmiedebergs Arch. Pharmacol., 328:191.PubMedCrossRefGoogle Scholar
  100. Millan, M.J., and Herz, A., 1985, The endocrinology of the opioids, Int. Rev. Neurobiol., 26:1.PubMedCrossRefGoogle Scholar
  101. Millan, M.J., Millan, M.H., and Herz, A., 1983, Contribution of the supraoptic nucleus to brain and pituitary pools of immunoreactive vasopressin and particular opioid peptides, and the interrelationships between these, in the rat, Neuroendocrinology, 36:310.PubMedCrossRefGoogle Scholar
  102. Millan, M.H., Millan, M.J., and Herz, A., 1984, The hypothalamic paraventricular nucleus: relationship to brain and pituitary pools of vasopressin and oxytocin as compared to dynorphin, β-endorphin and related opioid peptides in the rat, Neuroendocrinology, 38:108.PubMedCrossRefGoogle Scholar
  103. Miselis, R.R., 1981, The efferent projections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance, Brain Res., 230:1.PubMedCrossRefGoogle Scholar
  104. Moos, F., and Richard, P., 1983, Serotonergic control of oxytocin release during suckling in the rat: opposite effects in conscious and anesthetized rats, Neuroendocrinology, 36:300.PubMedCrossRefGoogle Scholar
  105. Moos, F., Freund-Mercier, M.J., Guerné, Y., Guerné, J.M., Stoeckel, M.E., and Richard, Ph., 1984, Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release, J. Endocrinol., 102:63.PubMedCrossRefGoogle Scholar
  106. Morris, B., and Livingston, A., 1983, Hormone-releasing stimuli do not alter met-enkephalin levels in the rat neurohypophysis, Life Sci., 33, Suppl. I:511.PubMedCrossRefGoogle Scholar
  107. Palkovits, M., Brownstein, M.J., and Zamir, N., 1983, Immunoreactive dynorphin and α-neo-endorphin in rat hypothalamo-neurohypophyseal system, Brain Res., 278:258.PubMedCrossRefGoogle Scholar
  108. Palkovits, M., Kiss, J.Z., Beinfeld, M.C., and Brownstein, M.J., 1984, Cholecystokinin in the hypothalamo-hypophyseal system, Brain Res., 299:186.PubMedCrossRefGoogle Scholar
  109. Pittman, Q.J., Lawrence, D., and Lederis, K., 1983, Presynaptic interactions in the neurohypophysis: endogenous modulators of release, Prog. Brain Res., 60:319.PubMedCrossRefGoogle Scholar
  110. Pitzel, L., and König, A., 1984, Lack of response in the release of oxytocin and vasopressin from isolated neurohypophyses to dopamine, met-enkephalin and leu-enkephalin, Exp. Brain Res., 56:221.PubMedCrossRefGoogle Scholar
  111. Plotsky, P.M., Bruhn, T.O. and Vale, W., 1984, Central modulation of immunoreactive corticotropin-releasing factor secretion by arginine vasopressin, Endocrinology, 115:1639.PubMedCrossRefGoogle Scholar
  112. Plotsky, P.M., Bruhn, T.O., and Otto, S., 1985, Central modulation of immunoreactive arginine vasopressin and oxytocin secretion into the hypophysial-portal circulation by corticotropin-releasing factor, Endocrinology, 116, 1669.PubMedCrossRefGoogle Scholar
  113. Poulain, D.A., and Wakerley, J.B., 1982, Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin, Neuroscience, 7:773.PubMedCrossRefGoogle Scholar
  114. Poulain, D.A., Wakerley, J.B., Dyball, R.E.J., 1977, Electrophysiological differentiation of oxytocin-and vasopressin-secreting neurones. Proc. R. Soc. Lond. B, 196:367.PubMedCrossRefGoogle Scholar
  115. Racké, K., Ritzel, H., Trapp, B., and Muscholl, E., 1982, Dopaminergic modulation of vasopressin release from isolated neurohypophysis of the rat. Possible involvement of endogenous opioids, Naunyn-Schmiedebergs Arch. Pharmacol., 319:56.PubMedCrossRefGoogle Scholar
  116. Rehfeld, J.F., 1985, Neuronal cholecystokinin: one or multiple transmitters, J. Neurochem., 44:1.PubMedCrossRefGoogle Scholar
  117. Rivier, C., and Vale, W., 1983, Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin, Nature, 305:325.PubMedCrossRefGoogle Scholar
  118. Rivier, C., Rivier, J., Mormede, P., and Vale, W., 1984, Studies of the nature of the interaction between vasopressin and corticotropin-releasing factor or adrenocorticotropin release in the rat, Endocrinology, 115:882.PubMedCrossRefGoogle Scholar
  119. Rossier, J., Battenberg, E., Pittman, Q., Bayon, A., Koda, L., Miller, R., Guillemin, R., and Bloom, F., 1979, Hypothalamic enkephalin neurones may regulate the neurohypophysis, Nature, 277:653.PubMedCrossRefGoogle Scholar
  120. Ruppert, S., Scherer, G., and Schütz, G., 1984, Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequence, Nature, 308:554.PubMedCrossRefGoogle Scholar
  121. Russell, J.A., 1983, Combined morphometric and immunocytochemical evidence that in the paraventricular nucleus of the rat oxytocin but not vasopressin neurones respond to the suckling stimulus, Prog. Brain Res., 60:31.PubMedCrossRefGoogle Scholar
  122. Russell, J.A., 1984, Naloxone provokes protracted secretion of oxytocin in morphine-dependent lactating rats anaesthetized with urethane, J. Physiol.,(Lond.), 355:34P.Google Scholar
  123. Russell, J.A., and Spears, N., 1984, Morphine inhibits suckling-induced oxytocin secretion in conscious lactating rats but also disrupts maternal behaviour, J. Physiol. (Lond.), 346:133P.Google Scholar
  124. Saavedra, J.M., Rougeot, C., Culman, J., Israel, A., Niwa, M., Tonon, M.C., Dray, F., and Vaudry, H., 1984, Decrease in corticotropin-releasing factor (CRF)-like immunoreactivity in rat intermediate and posterior lobes after stalk section, Excerpta Medica (Int. Congress Series 652):1290, Elsevier, Amsterdam.Google Scholar
  125. Saito, A., Sankaran, H., Goldfine, I.D., Williams, J.A., 1980, Cholecystokinin receptors in the brain: characterization and distribution, Science, 208:1155.PubMedCrossRefGoogle Scholar
  126. Samson, W.K., McDonald, J.K., and Lumpkin, M.D., 1985, Naloxone-induced dissociation of oxytocin and prolactin releases, Neuroendocrinology, 40:68.PubMedCrossRefGoogle Scholar
  127. Saphier, D., and Feldman, S., 1985, Electrophysiologic evidence for neural connections between the paraventricular nucleus and neurons of the supraoptic nucleus in the rat, Exp. Neurol., 89:289.PubMedCrossRefGoogle Scholar
  128. Sawchenko, P.E., and Swanson, L.W., 1985, Localization, colocalization, and plasticity of corticotropin-releasing factor immunoreactivity in rat brain, Fed. Proc., 44:221.PubMedGoogle Scholar
  129. Sawchenko, P.E., Swanson, L.W., and Vale, W., 1984, Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurons of the adrenalectomized rat, Proc. Natl. Acad. Sci. USA, 81:1883.PubMedCrossRefGoogle Scholar
  130. Schmale, M., and Richter, D., 1984, Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats, Nature, 308:705.PubMedCrossRefGoogle Scholar
  131. Seizinger, B.R., Maysinger, D., Hollt, V., Grimm, C., and Herz, A., 1982, Concomitant neonatal development and in vitro release of dynorphin and α-neo-endorphin, Life Sci., 31:1757.PubMedCrossRefGoogle Scholar
  132. Seizinger, B.R., Hollt, V., and Herz, A., 1984, Proenkephalin B (Prodynorphin)-derived opioid peptides: evidence for a differential processing in lobes of the pituitary, Endocrinology, 115:662.PubMedCrossRefGoogle Scholar
  133. Sgro, S., Ferguson, A.V., and Renaud, L.P., 1984, Subfornical organsupraoptic nucleus connections: an electrophysiologic study in the rat, Brain Res., 303:7.PubMedCrossRefGoogle Scholar
  134. Silverman, A.J., Hoffman, D.L., Zimmerman, E.A., 1981, The descending afferent connections of the paraventricular nucleus of the hypothalamus, Brain Res. Bull., 6:47.PubMedCrossRefGoogle Scholar
  135. Spinedi, E., and Negro-Vilar, A., 1984, Arginine vasopressin and ACTH release: correlation between binding characteristics and bioactivity in anterior pituitary dispersed cells, Excerpta Medica (Int. Congress Series 652):1321, Elsevier, Amsterdam.Google Scholar
  136. Summerlee, A.J.S., 1981, Extracellular recordings from oxytocin neurones during the expulsive phase of birth in unanaesthetized rats, J. Physiol. (Lond.), 321:1.Google Scholar
  137. Summerlee, A.J.S., and Lincoln, D.W., 1981, Electrophysiological recordings from oxytocinergic neurones during suckling in the unanaesthetized lactating rat, J. Endocrinol., 90:255.PubMedCrossRefGoogle Scholar
  138. Summy-Long, J.Y., Rosella, L.M., and Keil, L.C., 1981, Effects of centrally administered endogenous opioid peptides on drinking behavior, increased plasma vasopressin and pressor response to hypertonic sodium chloride, Brain Res., 221:343.PubMedCrossRefGoogle Scholar
  139. Summy-Long, J.Y., Keil, L.C., Sells, G., Kirby, A., Chee, O., and Severs, W.B., 1983, Cerebroventricular sites for enkephalin inhibition of the central actions of angiotensin, Am. J. Physiol., 244:R522.PubMedGoogle Scholar
  140. Summy-Long, J.Y., Miller, D.S., Rosella-Dampman, L.M., Hartman, R.D., and Emmert, S.E., 1984, A functional role for opioid peptides in the differential secretion of vasopressin and oxytocin, Brain Res., 309:362.PubMedCrossRefGoogle Scholar
  141. Swanson, L.W., and Sawchenko, P.E., 1983, Hypothalamic integration: organization of the paraventricular and supraoptic nuclei, Ann. Rev. Neurosci., 6:269.PubMedCrossRefGoogle Scholar
  142. Swanson, L.W., Sawchenko, P.E., Rivier, J., and Vale, W.W., 1983, Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study, Neuroendocrinology, 36:165.PubMedCrossRefGoogle Scholar
  143. Szligi, G.R., and Ludens, J.H., 1982, Studies on the nature and mechanism of the diuretic action of the opioid analgesic ethylketocyclazocine, J. Pharmacol. Exp. Ther., 220:585.Google Scholar
  144. Theodosis, D.T., 1985, Oxytocin-immunoreactive terminals synapse on oxytocin neurones in the supraoptic nucleus, Nature, 313:682.PubMedCrossRefGoogle Scholar
  145. Theodosis, D.T., and Poulain, D.A., 1983, Evidence for structural plasticity in the supraoptic nucleus of the rat hypothalamus in relation to gestation and lactation, Neuroscience, 11:183.CrossRefGoogle Scholar
  146. Theodosis, D.T., Chapman, D., Montagnese, C., Morris, J., Poulain, D.A., and Vincent, J.D., 1984, Structural plasticity in the hypothalamic supraoptic nucleus involves mainly oxytocin-secreting neurons, J. Steroid Biochem., 20(6B):1499.CrossRefGoogle Scholar
  147. Thomson, A.M., 1984, Supraoptic neurons sustain high frequency firing when extracellular Ca2+ is replaced with other divalent cations in rat brain slices, Neuroscience, 12:495.PubMedCrossRefGoogle Scholar
  148. Tramu, G., Croix, C., and Villez, A., 1983, Ability of the CRF immunoreactive neurons of the paraventricular nucleus to produce a vasopressin-like material, Neuroendocrinology, 37:467.PubMedCrossRefGoogle Scholar
  149. Tweedle, C.D., 1983, Ultrastructural manifestations of increased hormone release in the neurohypophysis, Prog. Brain Res., 60:259.PubMedCrossRefGoogle Scholar
  150. Tweedle, C.D., and Hatton, G.I., 1984, Synapse formation and disappearance in adult rat supraoptic nucleus during different hydration states, Brain Res., 309:373.PubMedCrossRefGoogle Scholar
  151. Vale, W., Rivier, C., Brown, M.R., Spiess, J., Koob, G., Swanson, L., Bilezikjian, L., Bloom, F., and Rivier, J., 1983, Chemical and biological characterization of corticotropin releasing factor., Rec. Prog. Horm. Res., 39:245.PubMedGoogle Scholar
  152. Vanderhaeghen, J.J., Lotstra, F., Vandesande, F., and Dierickx, K., 1981, Coexistence of cholecystokinin and oxytocin-neurophysin in some magnocellular hypothalamo-hypophyseal neurons, Cell Tissue Res., 221:227.PubMedCrossRefGoogle Scholar
  153. Vanderhaeghen, J.J., Lotstra, F., Liston, D.R., and Rossier, J., 1983, Proenkephalin, [Met] enkephalin, and oxytocin immunoreactivities are colocalized in bovine hypothalamic magnocellular neurones, Proc. Natl. Acad. Sci. USA, 80:5139.PubMedCrossRefGoogle Scholar
  154. Vandesande, F., Dierickx, K., and De Mey, J., 1977, The origin of the vasopressinergic and oxytocinergic fibres of the external region of the median eminence of the rat hypophysis, Cell Tissue Res., 180:443.PubMedCrossRefGoogle Scholar
  155. Van Leeuwen, F.W., Pool, C.W., and Sluiter, A.A., 1983, Enkephalin immuno-reactivity in synaptoid elements on glial cells in the rat neural lobe, Neuroscience, 8:229.PubMedCrossRefGoogle Scholar
  156. Wardlaw, S.L., Wehrenberg, W.B., Ferin, M., Antunes, J.L., and Frantz, A.G., 1982, Effect of sex steroids on β-endorphin in hypophyseal portal blood, J. clin. Endocrinol Metab., 55:877.PubMedCrossRefGoogle Scholar
  157. Watkins, L.R., Kinscheck, I.B., and Mayer, D.J., 1985, Prolongation of morphine analgesia by the cholecystokinin antagonist proglumide (BRE 10528), Brain Res., 327:169.PubMedCrossRefGoogle Scholar
  158. Watson, S.J., Akil, H., Fischli, W., Goldstein, A., Zimmerman, E.A., Nilaver, G., and Van Wimersma Greidanus, Tj.B., 1982, Dynorphin and vasopressin: common localization in magnocellular neurons, Science, 216:85.PubMedCrossRefGoogle Scholar
  159. Weber, E., and Barchas, J.D., 1983, Immunohistochemical distribution of dynorphin B in rat brain: relation of dynorphin A and α-neo-endorphin systems, Proc. Natl. Acad. Sci. USA, 80:1125.PubMedCrossRefGoogle Scholar
  160. Weber, E., Roth, K.A., Evans, C.J., Chang, J-K., and Barchas, J.D., 1983a, Immunohistochemical localization of dynorphin (1–8) in hypothalamic magnocellular neurons: evidence for absence of proenkephalin, Life Sci., 31:1761.CrossRefGoogle Scholar
  161. Weber, E., Geis, R., Voigt, K.H., and Barchas, J.D., 1983b, Levels of pro-neo-endorphin/dynorphin-derived peptides in the hypothalamo-posterior pituitary system of male and female Brattleboro rats, Brain Res., 260:166.PubMedCrossRefGoogle Scholar
  162. Wehrenberg, W.B., Wardlaw, S.L., Frantz, A.G., and Ferin, M., 1982, β-endorphin in hypophyseal portal blood; variations throughout the menstrual cycle, Endocrinology, 111:879.PubMedCrossRefGoogle Scholar
  163. Wennogle, L.P., Steel, D.J., and Petrack, B., 1985, Characterization of central cholecystokinin receptors using a radioiodinated octapeptide probe, Life Sci., 36:1485.PubMedCrossRefGoogle Scholar
  164. Whitnall, M.H., Mezey, E., and Gainer, H., 1985, Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles, Nature, 317:248.PubMedCrossRefGoogle Scholar
  165. Williams, T.D.M., Carter, D.A., and Lightman, S.L., 1985, Sexual dimorphism in the posterior pituitary response to stress in the rat, Endocrinology, 116:738.PubMedCrossRefGoogle Scholar
  166. Wolfson, B., Manning, R.W., Davis, L.G., Arentzen, R., and Baldino, F. Jr., 1985, Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy, Nature, 315:59.PubMedCrossRefGoogle Scholar
  167. Yamashita, H., Inenaga, K., Kawata, M., and Sano, Y., 1983, Phasically firing neurons in the supraoptic nucleus of the rat hypothalamus: immunocytochemical and electrophysiological studies, Neurosci. Lett., 37:87.PubMedCrossRefGoogle Scholar
  168. Zamir, N., Zamir, D., Eiden, L.E., Palkovits, M., Brownstein, M.J., Eskay, R.L., Weber, E., Faden, A.I., and Feuerstein, G., 1985, Methionine and leucine enkephalin in rat neurohypophysis: different responses to osmotic stimuli and T2 toxin, Science, 228:606.PubMedCrossRefGoogle Scholar
  169. Zimmerman, E.A., and Silverman, A.J., 1983, Vasopressin and adrenal cortical interactions, Prog. Brain Res., 60:493.PubMedCrossRefGoogle Scholar
  170. Zukin, R.S., and Zukin, S.R., 1984, The case for multiple opiate receptors, Trends in Neurosciences, 7(5):160.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Dennis W. Lincoln
    • 1
  • John A. Russell
    • 1
  1. 1.MRC Reproductive Biology Unit Centre for Reproductive Biology and Department of PhysiologyUniversity of EdinburghUK

Personalised recommendations