Skip to main content

Biosynthesis of the Tachykinins and Somatostatin

  • Chapter
Neuroendocrine Molecular Biology

Part of the book series: Biochemical Endocrinology ((BIOEND))

  • 81 Accesses

Abstract

There are two mechanisms by which the expression of a single neuropeptide gene may, in different tissues, give rise to alternative patterns of biologically active peptides:

  1. 1)

    Tissue-specific RNA splicing of a single gene transcript may result in the generation of messenger RNA (mRNA) species encoding different polypeptide precursors, which may be processed into different products. For example, transcription of the calcitonin gene in thyroid tissue results in the production of a mRNA encoding the calcitonin precursor, whereas in nervous tissue a mRNA encoding the neuropeptide calcitonin gene-related peptide (C6RP) is generated (Rosenfeld et al., 1983; Craig et al., this volume).

  2. 2)

    Tissue-specific post-translational modifications of a single polypeptide precursor may generate different polypeptide products. The best known example is pro-opiomelanocortin, the common precursor to adrenocorticotrophic hormone (ACTH), the melanocyte-stimulating hormone (α, β- and γ-MSH) and the endorphin family of opioid peptides. In the anterior pituitary gland, the predominant products of POMC processing are ACTH and β-endorphin, whereas in the pars intermedia αMSH, corticotrophin-like intermediate lobe peptide (CLIP) and acetylated, biologically inactive forms of endorphin are produced (Krieger & Liotta, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baskin, D.G. and Ensinck, J.W., 1984, Somatostatin in epithelial cells of intestinal mucosa is present primarily as somatostatin 28, Peptides, 5:615.

    Article  PubMed  CAS  Google Scholar 

  • Benoit, R., Bohlen, P., Esch, F. and Ling, M., 1984, Neuropeptides derived from prosomatostatin that do not contain the somatostatin-14 sequence, Brain Res. 311:23.

    Article  PubMed  CAS  Google Scholar 

  • Benoit, R., Bohlen, P., Ling, N., Briskin, A., Esch, F. Brazeau, P., Ying, S-Y and Guillemin, R., 1982, Presence of somatostatin 28 (1–12) in hypothalamus and pancreas, Proc. Natn. Acad. Sci. U.S.A. 79:917.

    Article  CAS  Google Scholar 

  • Benoit, R., Ling, N., Alford, B. and Guillemin, R., 1982, Seven peptides derived from pro-somatostatin in rat brain, Biochem. Biophys. Res. Commun. 107:944.

    Article  PubMed  CAS  Google Scholar 

  • Brazeau, P., Ling, N., Esch, F., Bohlen, P., Benoit, R. and Guillemin, R., 1981, High biological activity of the synthetic replicates of somatostatin-28 and somatostatin-25, Reg. Peptides 1:255.

    Article  CAS  Google Scholar 

  • Daikoku, S., Hisano, S., Kawano, H., Okamura, Y. and Tsuruo, Y., 1983, Ontogenetic studies on the topographical heterogeneity of somatostatin-containing neurones in rat hypothalamus, Cell Tissue Res. 233:347.

    Article  PubMed  CAS  Google Scholar 

  • Erspamer, V., 1981, The tachykinin peptide family, Trends Neurosci. 4:267.

    Article  CAS  Google Scholar 

  • Goodman, R.H., Aron, D.C. and Roos, B.A., 1983, Rat prepro-somatostatin, structure and processing by microsomal membranes, J. Biol. Chem. 258:5570.

    PubMed  CAS  Google Scholar 

  • Harmar, A.J. and Keen, P., 1982, Synthesis, and central and peripheral axonal transport of substance P in a dorsal root ganglion-nerve preparation in vitro, Brain Res. 231:379.

    Article  PubMed  CAS  Google Scholar 

  • Harmar, A.J. and Keen, P., 1984, Rat sensory ganglia incorporate radiolabelled amino acids into substance K (neurokinin α) in vitro, Neurosci. Letts. 51:387.

    Article  CAS  Google Scholar 

  • Harmar, A.J., Ivell, R. and Keen, P., 1982, The de novo biosynthesis of somatostatin and a related peptide in isolated rat dorsal root ganglia, Brain Res. 242:365.

    Article  PubMed  CAS  Google Scholar 

  • Harmar, A.J., Schofield, J.G. and Keen, P., 1981, Substance P biosynthesis in dorsal root ganglia: An immunochemical study of [35S]-methionine and [3H]-proline incorporation in vitro, Neuroscience 6:19172.

    Article  Google Scholar 

  • Hokfelt, T., Eide, R., Johansson, O., Luft, R., Nilsson, G. and Arimura, A., 1976, Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons in the rat, Neuroscience 1:131.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L., Hanley, M.R., Sandberg, B.E.B., Lee, C.M., Pinnock, R.D. and Watson, S.P., 1982, Substance P receptors in the nervous system and possible receptor subtypes, in: “Substance P in the nervous system,” R. Porter and M. O’Connor, eds., Pitman, London.

    Google Scholar 

  • Kawano, H., Diakoku, S. and Saito, S., 1982, Immunohistochemical studies of intrahypothalamic somatostatin-containing neurones in rat, Brain Res. 242:227.

    Article  PubMed  CAS  Google Scholar 

  • Kewley, C.F., Millar, R.P., Berman, M.C. and Schally, A.V., 1981, Depolarization-and ionophore-induced release of octacosa somatostatin from stalk median eminence synaptosomes, Science 213:913.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, S., Oada, M., Sugita, Y., Kanazawa, I. and Munekata, E., 1983, Novel neuropeptides, neurokinin α and β, isolated from porcine spinal cord, Proc. Japan. Acad, Ser. B., 59:101.

    Article  CAS  Google Scholar 

  • Krieger, D.T. and Liotta, A.F. 1979, Pituitary hormones in brain: where, how and why?, Science, 205:366.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, L.I. and Rehfeld, J.F., 1979, Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system, Brain Res. 165: 201.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C-M., Emson, P.C. and Iversen, L.L., 1980, The development and application of a novel N-terminal directed substance P antiserum, Life Sci. 27:535.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, J.M., Hokfelt, T., Nilsson, G., Terenius, L. and Rehfeld, J. R. Eide and S. Said, (1978), Acta physioi. Scand. 104, 499.

    Article  CAS  Google Scholar 

  • Mandarino, L., Stenner, D., Blanchard, W., Nissen, S., Gerich, J., Ling, N., Brazeau, P., Bohlen, P., Esch, F. and Guillemin, R., 1981, Selective effects of somatostatin-14,25,28 on in vitro insulin and glucagon secretion, Nature 291:767.

    Article  Google Scholar 

  • Millar, R.P., Sheward, W.J., Wegener, I. and Fink, G., 1983, Somatostatin-28 is a hormonally active peptide released into hypophysial portal vessel blood, Brain Res. 260:334.

    Article  PubMed  CAS  Google Scholar 

  • Nawa, H., Hirose, T., Takashima, H., Inayama S & Nakanishi, S., 1983, Nucleotide sequence of cloned cDNAs for two types of bovine brain substance P precursor, Nature 306:32.

    Article  PubMed  CAS  Google Scholar 

  • Nawa, H., Kotani, H. and Nakaniski, S., 1984, Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing, Nature 312:729.

    Article  PubMed  CAS  Google Scholar 

  • Pierotti, A.R. and Harmar, A.J., 1985, Multiple forms of somatostatin-like immunoreactivity in the hypothalamus and amygdala of the rat: selective localization of somatostatin-28 in the median eminence, J. Endocrinol. 105:383.

    Article  PubMed  CAS  Google Scholar 

  • Pierotti, A.R., Harmar, A.J., Tannahill, L. and Arbuthnott, G.W., 1985, Different patterns of molecular forms of somatostatin are released by the rat median eminence and hypothalamus, Neurosci. Letts. 57:215.

    Article  CAS  Google Scholar 

  • Pradayrol, L., Jornvall, H., Mutt, V. and Ribet, A., 1980, N-terminally extended somatostatin: the primary structure of somatostatin-28, FEBS Lett. 109:55.

    Article  PubMed  CAS  Google Scholar 

  • Ravazzola, M., Benoit, R., Ling, N., Guillemin, R. and Orci, L., 1983, Immunocytochemical localization of prosomatostatin fragments in maturing and mature secretory granules of pancreatic and gastrointestinal D-cells, Proc. Natn. Acad. Sci. U.S.A. 80:215.

    Article  CAS  Google Scholar 

  • Rosenfeld, M.G., Mermod, J-J., Amara, S.G., Swanson, L.W., Sawchenko, P.E. Rivier, J., Vale, W.W. and Evans, R.M., 1983, Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing, Nature 304:129.

    Article  PubMed  CAS  Google Scholar 

  • Srikant, C.B. and Patel, Y.C., 1981, Receptor binding of somatostatin-28 is tissue specific, Nature 294:259.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Harmar, A.J., Pierotti, A.R., Keen, P. (1986). Biosynthesis of the Tachykinins and Somatostatin. In: Fink, G., Harmar, A.J., McKerns, K.W. (eds) Neuroendocrine Molecular Biology. Biochemical Endocrinology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5131-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5131-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5133-7

  • Online ISBN: 978-1-4684-5131-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics