Preparation of Freeze-Dried Specimens for Electron Microscopy

  • Thomas H. GiddingsJr.
  • George P. Wray


The application of freeze-drying to electron microscopy (EM) involves rapid freezing of the specimen followed by the removal of the frozen water by controlled sublimation. In the simplest case, freeze-drying is followed directly by observation in a transmission electron microscope. The freeze-drying step can also be incorporated into a wide range of more complex processing protocols, which we will refer to briefly, directing the reader to recent reviews and some examples from the literature. Our emphasis will be on the methodology of freeze-drying itself and on the results that can be expected from this technique. Today there are many preparative techniques to choose from, including critical point-drying, freeze-substitution, freeze-etching, and standard fixation and embedding. All are capable of yielding excellent morphological preservation when appropriately applied. We will discuss freeze-drying in the context of these methods in order to identify its unique capabilities.


Rapid Freezing Freezing Damage Freezing Technique Electron Microscope Autoradiography Electron Microscopy Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W., 1984, Cryo-electron microscopy of viruses, Nature (London) 308: 32–36.CrossRefGoogle Scholar
  2. Baker, J. R., Appleton, T. C., 1976, A technique for electron microscope autoradiography (and X-ray microanalysis) of diffusible substances using freeze-dried fresh frozen sections, J. Microsc. (Oxford) 108: 307–315.CrossRefGoogle Scholar
  3. Bank, H., 1973, Visualization of freezing damage. II. Structural alterations during warming, Cryobiology 10: 157–170.PubMedCrossRefGoogle Scholar
  4. Bruggeller, P., and Mayer, E., 1980, Complete vitrification in pure liquid water and dilute aqueous solutions, Nature (London) 288: 569–571.CrossRefGoogle Scholar
  5. Burry, R. W., Lasher, R. S., 1978, Freeze-drying of unfixed monolayer cultures for electron microscope autoradiography, Histochemistry 58: 259–272.PubMedCrossRefGoogle Scholar
  6. Costello, M. J., and Corless, J. M., 1978, The direct measurement of temperature changes within freeze-fracture specimens during rapid quenching in liquid coolants, J. Microsc. (Oxford) 112: 17–37.CrossRefGoogle Scholar
  7. Coulter, H. D., Terracio, L., 1977, Preparation of biological tissue for electron microscopy by freeze-drying, Anat. Rec. 187: 477–493.PubMedCrossRefGoogle Scholar
  8. Davey, J. G., Branton, D., 1970, Subliming ice surfaces: Freeze-etch electron microscopy, Science 168: 1216–1218.CrossRefGoogle Scholar
  9. Dowell, L. G., Rinfret, A. P., 1960, Low temperature forms of ice as studied by X-ray diffraction, Nature (London) 188: 1144–1148.CrossRefGoogle Scholar
  10. Dubochet, J., McDowall, A. W., Menge, B., Schmid, E. N., Lickfeld, K. G., 1983, Electron microscopy of frozen-hydrated bacteria, J. Bacteriol. 155: 381–390.PubMedGoogle Scholar
  11. Dudek, R. W., Childs, G. V., and Boyne, A. F., 1982, Quick-freezing and freeze-drying in preparation for high quality morphology and immunocytochemistry at the ultrastructural level: Application to pancreatic beta cell, J. Histochem. Cytochem. 30: 129–138.PubMedCrossRefGoogle Scholar
  12. Fitzharris, T. P., Bloodgood, R. A., Mcintosh, J. R., 1972, The effect of fixation on the wave propagation of the protozoan axostyle, Tissue Cell 4: 219–225.PubMedCrossRefGoogle Scholar
  13. Fotino, M., Giddings, T. H., 1985, Ultrastructural visualization of unfixed and unstained whole mounts by high-voltage electron microscopy at low temperatures. J. Ultrastruct. Res. 91: 112–126.PubMedCrossRefGoogle Scholar
  14. Gilkey, J. C, Staehelin, L. A., 1986, A critical evaluation of the use of ultrarapid freezing techniques for the preservation of cellular ultrastructure, J. Electron Microsc. Tech. 1986.Google Scholar
  15. Heuser, J. E., 1983, Procedure for freeze-drying molecules adsorbed to mica flakes, J. Mol. Biol. 169: 155–195.PubMedCrossRefGoogle Scholar
  16. Heuser, J. E., Kirschner, M. W., 1980, Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol. 86: 212–234.PubMedCrossRefGoogle Scholar
  17. Johnson, I. T., Bronk, J. R., 1979, Electron microscope autoradiography of a diffusible intracellular constituent, using freeze-dried frozen sections of mammalian intestinal epithelium, J. Microsc. (Oxford) 115: 187–194.CrossRefGoogle Scholar
  18. Karp, R. D., Silcox, J. C., Somlyo, A. V., 1982, Cryoultramicrotomy: Evidence against melting and use of a low temperature cement for specimen orientation, J. Microsc. (Oxford) 125: 157–165.CrossRefGoogle Scholar
  19. Kistler, J., Kellenberger, E., 1977, Collapse phenomena in freeze-drying, J. Ultrastruct. Res. 59: 70–75.PubMedCrossRefGoogle Scholar
  20. McDowall, A. W., Chang, J.-J., Freeman, R., Lepault, J., Walter, C. A., and Dubochet, J., 1983, Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples, J. Microsc. (Oxford) 131: 1–9.CrossRefGoogle Scholar
  21. Mackenzie, A. P., 1977, Non-equilibrium freezing behavior of aqueous systems, Philos. Trans. R. Soc. London Ser B 278: 167–189.CrossRefGoogle Scholar
  22. Mersey, B., McCully, M. E., 1978, Monitoring of the course of fixation of plant cells, J. Microsc. (Oxford) 114: 49–76.CrossRefGoogle Scholar
  23. Miller, K. R., Prescott, C. S., Jacobs, T. L., Lasignal, N. L., 1983, Artifacts associated with quick-freezing and freeze-drying, J. Ultrastruct. Res. 82: 123–133.PubMedCrossRefGoogle Scholar
  24. Moreton, R. B., 1981, Electron-probe X-ray microanalysis: Techniques and recent applications in biology, Biol. Rev. 56: 409-461.Google Scholar
  25. Nei, T., 1973, Growth of ice crystals in frozen specimens, J. Microsc. (Oxford) 99: 227–233.CrossRefGoogle Scholar
  26. Nermut, M. V., and Frank, H., 1971, Fine structure of influenza A2(Singapore) as revealed by negative staining, freeze-drying and freezer-etching, J. Gen. Virol. 10: 37–51.PubMedCrossRefGoogle Scholar
  27. Plattner, H., and Bachmann, L., 1982, Cryofixation: A tool in biological ultrastructural research, Int. Rev. Cytol. 79: 237–304.PubMedCrossRefGoogle Scholar
  28. Porter, K. R., Anderson, K. L., 1982, The structure of the cytoplasmic matrix preserved by freeze-drying and freeze-substitution, Eur. J. Cell Biol. 29: 83–96.PubMedGoogle Scholar
  29. Roberts, I. M., and Duncan, G. H., 1981, A simple device for freeze-drying electron microscope specimens, J. Microsc. (Oxford) 124: 295–303.CrossRefGoogle Scholar
  30. Salmon, E. D., and Segall, R. R., 1980, Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variegatus), J. Cell Biol. 86: 355–365.PubMedCrossRefGoogle Scholar
  31. Schiller, A., Taugner, R., 1980, Freeze-fracturing and deep-etching with the volatile cryoprotectant ethanol reveals true membrane surfaces of kidney structures, Cell Tissue Res. 210: 57–69.PubMedCrossRefGoogle Scholar
  32. Schwabe, K. G., Terracio, L., 1980, Ultrastructural and thermocouple evaluation of rapid freezing techniques, Cryobiology 17: 571–584.PubMedCrossRefGoogle Scholar
  33. Seveus, L., 1978, Preparation of biological material for X-ray microanalysis of diffusible elements, J. Microsc. (Oxford) 112: 269–279.CrossRefGoogle Scholar
  34. Smith, P. R., 1980, Freeze-drying specimens for electron microscopy, J. Ultrastruct. Res. 72: 380–384.PubMedCrossRefGoogle Scholar
  35. Somlyo, A. V., Shuman, H., and Somlyo, A. P., 1977, Elemental distribution in striated muscle and the effects of hypertonicity: Electron probe analysis of cryo sections, J. Cell Biol. 74: 828-857.Google Scholar
  36. Studer, D., Moor, H., Gross, H., 1981, Single bacteriorhodopsin molecules revealed on both surfaces of freeze-dried and heavy metal-decorated purple membranes, J. Cell Biol. 90: 153–159.PubMedCrossRefGoogle Scholar
  37. Terracio, L., Schwabe, K. G., 1981, Freeze-drying of biological tissues for electron microscopy, J. Histochem. Cytochem. 29: 1021–1028.PubMedCrossRefGoogle Scholar
  38. Todd, W. J., Wray, G. P., Hitchcock, P. J., 1984, Arrangement of pili in colonies of Neisseria gonorrheae, J. Bacteriol. 159: 312–320.PubMedGoogle Scholar
  39. Williams, R. C., 1953, A method of freeze-drying for electron microscopy, Exp. Cell Res. 4: 188–199.CrossRefGoogle Scholar
  40. Wolosewick, J. J., Porter, K. R., 1979a, Microtrabecular lattice of the cytoplasmic ground substance: Artifact or reality, J. Cell Biol. 82: 114–139.PubMedCrossRefGoogle Scholar
  41. Wolosewick, J. J., and Porter, K. R., 1979b, Preparation of cultured cells for electron microscopy, in: Practical Tissue Culture Applications ( K. Maramorosch and H. Hirumi, eds.), pp. 59 - 85, Academic Press, New York.Google Scholar
  42. Wyckoff, R. W. G., 1946, Frozen-dried preparations for the electron microscope, Science 104: 36–37.CrossRefGoogle Scholar
  43. Zingsheim, H. P., 1984, Sublimation rates of ice in a cryoultramicrotome, J. Microsc. (Oxford) 133: 307–312.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Thomas H. GiddingsJr.
    • 1
  • George P. Wray
    • 1
  1. 1.Department of Molecular, Cellular, and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations