Advertisement

Computer-Aided Reconstruction of Serial Sections

  • David L. Balkwill

Abstract

Thin sectioning probably has been used more than any other method to prepare biological specimens for transmission electron microscopy. The enduring popularity of this technique is hardly surprising, considering its ability to reveal intracellular features at high resolution and its compatibility with a wide range of sophisticated staining procedures. Yet, an inherent drawback of thin sectioning is the fact that a single section represents only a very small portion (essentially a two-dimensional plane) of each cell through which it passes. The information provided by such a section can be deceptive or misleading if it is not interpreted within the context of the entire cell and in view of the direction in which the section traveled through that cell. This is especially true if (as in most thin sectioning studies) one views only a limited number of randomly cut sections. For example, the micrograph in Figure la shows a section that appears to pass through four independent cells. Subsequent serial sections (Figure lb,c), on the other hand, demonstrate that two of these “cells” actually are portions of a single spiral-shaped cell that was transected twice. Similar, but often far more intricate, deceptions may be encountered when randomly cut sections are used to examine intracellular ultrastructure.

Keywords

Serial Section Cell Feature Lipid Body Stereo Pair Euglena Gracilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. G. W., and Brenner, R. M., 1971, Accurate placement of ultrathin sections on grids: Control by sol-gel phases of a gelatin flotation fluid, Stain Technol. 46: 1–6.PubMedGoogle Scholar
  2. Balkwill, D. L., Stevens, S. E., Jr., Nierzwicki-Bauer, S. A., 1984, Use of computer-aided reconstructions and high-voltage electron microscopy to examine microbial three-dimensional architecture, Biotechniques 2: 242–251.Google Scholar
  3. Fahrenbach, W. H., 1984, Continuous serial thin sectioning for electron microscopy, J. Electron Microsc. Tech. 1: 387–398.CrossRefGoogle Scholar
  4. Hayat, M. A., 1981, Principles and Techniques of Electron Microscopy: Biological Applications, Vol. 1, 2nd ed., University Park Press, Baltimore.Google Scholar
  5. Hoffmann, H.-P., Avers, C. J., 1973, Mitochondrion of yeast: Ultrastructural evidence for one giant, branched organelle per cell, Science 181: 749–750.PubMedCrossRefGoogle Scholar
  6. Kay, D., 1961, Techniques for Electron Microscopy, Blackwell, Oxford.Google Scholar
  7. Knobler, R. L., Stempak, J. G., Laurencin, O., 1978, Preparation and analysis of serial section in electron microscopy, in Principles and Techniques in Electron Microscopy, Vol. 8 ( M. A. Hayat, ed.), pp. 113–155, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  8. Levinthal, C., Ware, R., 1972, Three dimensional reconstruction from serial sections, Nature (London) 236: 207–210.CrossRefGoogle Scholar
  9. Levinthal, C., Macagno, E. R., Tountas, C., 1974, Computer-aided reconstruction from serial sections, Fed. Proc. 33: 2336–2340.PubMedGoogle Scholar
  10. Levinthal, F., Macagno, E. R., and Levinthal, C., 1975, Anatomy and development of identified cells in isogenetic organisms, Cold Spring Harbor Symp. Quant. Biol. 40: 321–331.CrossRefGoogle Scholar
  11. Macagno, E. R., Levinthal, C., and Sobel, I., 1979. Three-dimensional computer reconstruction of neuronal assemblies, Annu. Rev. Biophys. Bioeng. 8: 323–351.PubMedCrossRefGoogle Scholar
  12. Moens, P. В., Moens, T., 1981, Computer measurements and graphics of three-dimensional cellular ultrastructure, J. Ultrastruct. Res. 73: 131–141.CrossRefGoogle Scholar
  13. Nierzwicki-Bauer, S. A., Balkwill, D. L., Stevens, S. E., Jr., 1983a, Three-dimensional ultrastructure of a unicellular cyanobacterium, J. Cell Biol. 97: 713–722.PubMedCrossRefGoogle Scholar
  14. Nierzwicki-Bauer, S. A., Balkwill, D. L., Stevens, S. E., Jr., 1983b, Use of a computer-aided reconstruction system to examine the three-dimensional architecture of cyanobacteria, J. Ultrastruct. Res. 84: 73–82.PubMedCrossRefGoogle Scholar
  15. Nierzwicki-Bauer, S. A., Balkwill, D. L., Stevens, S. E., Jr., 1984, The use of high-voltage electron microscopy and semi-thick sections for examination of cyanobacterial thylakoid mem¬brane arrangements, J. Microsc. (Oxford) 133: 55–60.CrossRefGoogle Scholar
  16. Pease, D. C., 1960, Histological Techniques for Electron Microscopy, Academic Press, New York.Google Scholar
  17. Pellegrini, M., 1980a, Three-dimensional reconstruction of organelles in Euglena gracilis Z. I. Qualitative and quantitative changes of chloroplasts and mitochondrial reticulum in synchronous photoautotrophic culture, J. Cell Sci. 43: 137–166.PubMedGoogle Scholar
  18. Pellegrini, M., 1980b, Three-dimensional reconstruction of organelles in Euglena gracilis Z. II. Qualitative and quantitative changes of chloroplasts and mitochondrial reticulum in synchronous cultures during bleaching, J. Cell Sci. 46: 313–340.PubMedGoogle Scholar
  19. Remsen, С. C., Watson, S. W., Waterbury, J. В., Triiper, H. G., 1968, Fine structure of Ectothiorhodospira mobilis Pelsh, J. Bacteriol. 95: 2374–2391.PubMedGoogle Scholar
  20. Research Resources Information Center, 1981, CARTOS: Modeling Nerves in Three Dimensions, Division of Research Resources, National Institutes of Health, NIH Publication 81 - 2289.Google Scholar
  21. Research Resources Information Center, 1983, Biotechnology Resources: A Research Resources Directory, Division of Research Resources, National Institutes of Health, NIH Publication 83–1430.Google Scholar
  22. Roth, J., 1983, The colloidal gold marker system for light and electron microscopic cytochemistry, in: Techniques in Immunocytochemistry, Vol. 2 ( G. R. Bullock and P. Petrusz, eds.), pp. 217–284, Academic Press, New York.Google Scholar
  23. Schôtz, F., Bathelt, H., Arnold, C.-G., Schimmer, O., 1972, Die Architektur und Organisation der Chlamydomonas-Zelle, Ergebnisse der Elektronenmikroskopie von Serienschnitten und der daraus resultierenden driedimensionalen Rekonstruktion, Protoplasma 75: 229–254.PubMedCrossRefGoogle Scholar
  24. Sjôstrand, F. S., 1958, Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections, J. Ultrastruct. Res. 2: 122–170.PubMedCrossRefGoogle Scholar
  25. Sjôstrand, F. S., 1967, Electron Microscopy of Cells and Tissues, Academic Press, New York.Google Scholar
  26. Sobel, I., Levinthal, C., and Macagno, E. R., 1980, Special techniques for the automatic computer reconstruction of neuronal structures, Annu. Rev. Biophys. Bioeng. 9: 347-362.Google Scholar
  27. Spurr, A. R., 1969, A low-viscosity epoxy resin embedding medium for electron microscopy, J. Ultrastruct. Res. 26: 31-43.Google Scholar
  28. Stevens, J. K., Davis, T. L., Friedman, N., and Sterling, P., 1980, A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections, Brain Res. Rev. 2: 265–293.CrossRefGoogle Scholar
  29. Tyler, S., 1981, Another multiple-grid holder—this one especially for staining serial ultrathin sections, Trans. Am. Microsc. Soc. 100: 322 - 325.CrossRefGoogle Scholar
  30. Van Iterson, W., and Aten, J. A., 1976, Nuclear and cell division in Bacillus subtilis: Cell development from spore germination, J. Bacteriol. 126: 384–399.PubMedGoogle Scholar
  31. Van Iterson, W., Michels, P. A. M., Vyth-Dreese, F., Aten, J. A., 1975, Nuclear and cell division in Bacillus subtilis: Dormant nucleoids in stationary-phase cells and their activation, J. Bacteriol. 121: 1189–1199.PubMedGoogle Scholar
  32. Veen, A., and Peachey, L. D., 1977, TROTS: A computer graphics system for three-dimensional reconstruction from serial sections, Comput. Graphics 2: 135–150.CrossRefGoogle Scholar
  33. Vivier, E., and Petitprez, A., 1972, Etude du système vacuolaire de l’hématozoaire Anthemosoma garnhami à l’aide des coupes sérieés et de reconstitutions tridimensionnelles, J. Ultrastruct. Res. 41: 219–237.PubMedCrossRefGoogle Scholar
  34. Ware, R. W., LoPresti, V., 1975, Three-dimensional reconstruction from serial sections, Int. Rev. Cytol. 40: 325–440.PubMedCrossRefGoogle Scholar
  35. Waters, H., Hunt, P., 1980, The in vivo three-dimensional form of a plant mycoplasma-like organism by the analysis of serial ultrathin sections, J. Gen. Microbiol. 116: 111–131.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • David L. Balkwill
    • 1
  1. 1.Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA

Personalised recommendations