Secrets of Successful Embedding, Sectioning, and Imaging

  • H. C. Aldrich
  • H. H. Mollenhauer


For those of us who have worked with resistant structures such as spores, embedding media have always been central to success in ultrathin sectioning. Development of an effective embedding protocol often meant success or failure of a research project. However, as microbiologists have gained more experience with a variety of embedding resins, it has become clear that we must address criteria beyond success or failure of penetration. Choice of embedding resin can affect image contrast, stability under the electron beam, image granularity, and size of cells and organelles. Furthermore, when postsectioning manipulations such as immunocytochemistry with colloidal gold are used, we have to consider such characteristics as hydrophobicity and charge on the sections when we select embedding protocols.


Uranyl Acetate Osmium Tetroxide Succinic Anhydride Diamond Knife Knife Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldrich, H. C., 1967, Ultrastructure of meiosis in three species of Physarum, Mycologia 59: 127–148.PubMedCrossRefGoogle Scholar
  2. Aldrich, H. C., 1982, Electron microscopy techniques, in: Cell Biology of Physarum and Didymium ( H. C. Aldrich and J. W. Daniel, eds.), Vol. 2, pp. 255 - 260, Academic Press, New York.Google Scholar
  3. Armbruster, B. L., Carlemalm, E., Chiovetti, R., Garavito, R. M., Hobot, J. A., Kellenberger, E., Villiger, W., 1982, Specimen preparation for electron microscopy using low temperature embedding resins, J. Microsc. (Oxford) 126: 77–85.CrossRefGoogle Scholar
  4. Avery, S. W., Ellis, E. A., 1978, Methods for removing uranyl acetate precipitate from ultrathin sections, Stain Technol. 53: 137–140.PubMedGoogle Scholar
  5. Bendayan, M., 1984, Enzyme-gold electron microscopic histochemistry: A new approach for the ultrastructural localization of macromolecules, J. Electron Microsc. Tech. 1: 349–372.CrossRefGoogle Scholar
  6. Bjorkman, N., Hellstrôm, B., 1965, Lead-ammonium acetate; a staining medium for electron microscopy free of contamination by carbonate, Stain Technol. 40: 169–171.Google Scholar
  7. Bôhler, S., 1975, Artefacts and specimen preparation faults in freeze etch technology, Balzers AG, Liechtenstein.Google Scholar
  8. Causton, B. E., 1984, The choice of resins for electron immunocytochemistry, in: Immunolabelling for Electron Microscopy ( J. M. Polak and I. M. Varndel, eds.), pp. 29–36, Elsevier, Amsterdam.Google Scholar
  9. De Bruijn, W. C., 1973, Glycogen, its chemistry and morphologic appearance in the electron microscope. I. A modified 0s04 fixative which selectively contrasts glycogen, J. Ultrastruct. Res. 42: 29–50.PubMedCrossRefGoogle Scholar
  10. Dubochet, J., McDowall, A. W., Menge, B., Schmid, E. N., Lickfeld, K. G., 1983, Electron microscopy of frozen-hydrated bacteria, J. Bacteriol. 155: 381–390.PubMedGoogle Scholar
  11. Ellis, E. A., Anthony, D. W., 1979, A method for removing precipitate from ultrathin sections resulting from glutaraldehyde-osmium tetroxide fixation, Stain Technol. 54: 282–285.PubMedGoogle Scholar
  12. Feder, N., and O’Brien, T. P., 1968, Plant microtechnique: Some principles and new methods, Am. J. Bot. 55: 123–142.CrossRefGoogle Scholar
  13. Feldman, D. G., 1962, A method of staining thin sections with lead hydroxide for precipitate-free sections, J. Cell Biol. 15: 592–595.PubMedCrossRefGoogle Scholar
  14. Fernândez-Morân, H., 1985, Cryo-electron microscopy and ultramicrotomy: Reminiscences and reflections, in: Advances in Electronics and Electron Physics, Suppl. 16 ( P. W. Hawkes, ed.), pp. 167–223, Academic Press, New York.Google Scholar
  15. Frasca, J. M., and Parks, V. R. 1965, A routine technique for double-staining ultrathin sections using uranyl lead salts, J. Cell Biol. 25: 157–169.PubMedCrossRefGoogle Scholar
  16. Freeman, J. A., and Spurlock, B. O., 1962, A new epoxy embedment for electron microscopy, J. Cell Biol. 13: 437–443.PubMedCrossRefGoogle Scholar
  17. Glauert, A. M., Rogers, G. E., and Glauert, R. H., 1956, A new embedding medium for electron microscopy, Nature (London) 178: 803.CrossRefGoogle Scholar
  18. Hayat, M. A., 1981, Fixation for Electron Microscopy, Academic Press, New York.Google Scholar
  19. Hobot, J. A., Carlemalm, E., Villiger, W., Kellenberger, E., 1984, Periplasmic gel: New concept resulting from reinvestigation of bacterial cell envelope ultrastructure by new methods, J. Bacteriol. 160: 143–152.PubMedGoogle Scholar
  20. Kuo, J., 1980, A simple method for removing stain precipitates from biological sections for transmission electron microscopy, J. Microsc. (Oxford) 120: 221–224.CrossRefGoogle Scholar
  21. Kushida, H., 1962, A study of cellular swelling and shrinkage during fixation, dehydration and embedding in various standard media, J. Electron Microsc. (Japan) 11: 135–138.Google Scholar
  22. Kushida, H., 1974, A new method for embedding with a low viscosity epoxy resin “Quetol 651,” J. Electron Microsc. (Japan) 23: 197.Google Scholar
  23. Kushida, H., 1975, Hardness control of the Quetol 651 cured block, J. Electron Microsc. (Japan) 24: 299.Google Scholar
  24. Langenberg, W. G., 1982, Silicone additive facilitates epoxy plastic sectioning, Stain Technol. 57: 79–82.PubMedGoogle Scholar
  25. Leduc, E. H., and Bernhard, W., 1961, Ultrastructural cytochemistry: Enzyme and acid hydrolysis of nucleic acids and proteins, J. Biophys. Biochem. Cytol. 10: 437–455.PubMedCrossRefGoogle Scholar
  26. Lee, R. M. K. W., 1984, A critical appraisal of the effects of fixation, dehydration and embedding on cell volume, in: The Science of Biological Specimen Preparation for Microscopy and Microanalysis ( J.-P. Revel, T. Barnard, and G. H. Haggis, eds.), pp. 61–70, SEM, Inc., Chicago.Google Scholar
  27. Luft, J. H., 1961, Improvements in epoxy resin embedding methods, J. Biophys. Biochem. Cytol. 9: 409–414.PubMedCrossRefGoogle Scholar
  28. Luft, J. H., 1973, Embedding media—old and new, in: Advanced Techniques in Biological Electron Microscopy ( J. K. Koehler, ed.), Vol. 1, pp. 1–34, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  29. Millonig, G., 1961, A modified procedure for lead staining of thin sections, J. Biophys. Biochem. Cytol. 11: 736–739.PubMedCrossRefGoogle Scholar
  30. Mollenhauer, H. H., 1964, Plastic embedding mixtures for use in electron microscopy, Stain Technol. 39: 111–114.PubMedGoogle Scholar
  31. Mollenhauer, H. H., 1974, Poststaining sections for electron microscpy, Stain Technol. 49: 305–308.PubMedGoogle Scholar
  32. Mollenhauer, H. H., 1975, Poststaining sections for electron microscopy: An alternate procedure, Stain Technol. 50: 292.PubMedGoogle Scholar
  33. Mollenhauer, H. H., 1981, Diamond knives and chatter: A case history of six knives, Sorval Applications Brief No. 4.Google Scholar
  34. Mollenhauer, H. H., 1984, Surfactants improve sectioning of epoxy embedding resins, Tex. Soc. Electron Microsc. J. 15: 30.Google Scholar
  35. Mollenhauer, H. H., 1986, Surfactants as resin modifiers and their effect on sectioning, J. Electron Microsc. Tech. 3: 217-222.Google Scholar
  36. Mollenhauer, H. H., Droleskey, R. E., 1980, Some specific staining reactions of potassium ferricyanide in cells of guinea pig testes, J. Ultrastruct. Res. 72: 385–391.PubMedCrossRefGoogle Scholar
  37. Mollenhauer, H. H., Droleskey, R. E., 1985, Some characteristics of epoxy embedding resins, J. Electron Microsc. Tech. 2 (6): 557–562.CrossRefGoogle Scholar
  38. Mollenhauer, H. H., Morré, D. J., 1978, Contamination of thin sections, cause and elimination, in: Electron Microscopy 1978, Vol. II ( J. M. Sturgess, C. K. Kalnins, F. P. Ottensmeyer, and G. T. Simon, eds.), pp. 78–79. Imperial Press, Ontario.Google Scholar
  39. Muller, L. L., Jacks, T. J., 1975, Rapid chemical dehydration of samples for electron microscopic examinations, J. Histochem. Cytochem. 23: 107–110.PubMedCrossRefGoogle Scholar
  40. Muller, M., Meister, N., Moor, H., 1980, Freezing in a propane jet and its application in freeze - fracturing, Mikroskopie 36: 129–140.PubMedGoogle Scholar
  41. Napoli, C. A., Hubbell, D. H., 1975, Ultrastructure of Rhizobium induced infection threads in clover root hairs, Appl. Microbiol. 30: 1003–1009.PubMedGoogle Scholar
  42. Persson, A., and Persson, K., 1976, Rational and complete testing of diamond knives, J. Ultrastruct. Res. 57: 213–214.Google Scholar
  43. Peters, A., Hinds, P. L., Vaughn, J. E., 1971, Extent of stain penetration in sections prepared for electron microscopy, J. Ultrastruct. Res. 36: 37–45.PubMedCrossRefGoogle Scholar
  44. Reid, N., 1975, Ultramicrotomy, North-Holland, Amsterdam.Google Scholar
  45. Reymond, O., Pickett-Heaps, J. D., 1983, A routine flat embedding method for electron microscopy of microorganisms allowing selection and precisely orientated sectioning of single cells by light microscopy, J. Microsc. (Oxford) 130: 79–84.CrossRefGoogle Scholar
  46. Reynolds, E. S., 1963, The use of lead citrate at high pH as an electron opaque stain in electron microscopy, J. Cell Biol. 17: 208–212.PubMedCrossRefGoogle Scholar
  47. Ringo, D. L., Brennan, E. F., Cota-Robles, E. H., 1982, Epoxy resins are mutagenic: Implications for electron microscopists, J. Ultrastruct. Res. 80: 280–287.PubMedCrossRefGoogle Scholar
  48. Ringo, D. L., Read, D. B., Cota-Robles, E. H., 1984, Glove materials for handling epoxy resins, J. Electron Microsc. Tech. 1: 417–418.CrossRefGoogle Scholar
  49. Roos, U.-P., 1973, Light and electron microscopy of rat kangaroo cells in mitosis. I. Formation and breakdown of the mitotic apparatus, Chromosoma 40: 43–82.PubMedCrossRefGoogle Scholar
  50. Ryter, A., Kellenberger, E., 1958, Etude au microscope électronique de plasmas contenant de l’acide desoxyribonucleique, Z. Naturforsch. 13B: 597–605.Google Scholar
  51. Skvarla, J. J., Larson, D. A., 1966, Fine structural studies of Zea mays pollen. I. Cell membranes and exine ontogeny, Am. J. Bot. 53: 1112–1125.CrossRefGoogle Scholar
  52. Smith, R. E., Farquhar, M. G. 1966, Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland, J. Cell Biol. 31: 319–348.PubMedCrossRefGoogle Scholar
  53. Spaur, R., Moriarty, G., 1977, Improvements of glycol methacrylate. I. Its use as an embedding medium for electron microscope studies, J. Histochem. Cytochem. 25: 163–174.PubMedCrossRefGoogle Scholar
  54. Spurlock, B. O., Kattine, V. C., Freeman, J. A., 1963, Technical modifications in Maraglas embedding, J. Cell Biol. 17: 203–204.PubMedCrossRefGoogle Scholar
  55. Spurr, A. R., 1969, A low viscosity epoxy resin embedding medium for electron microscopy, J. Ultrastruct. Res. 26: 31–43.PubMedCrossRefGoogle Scholar
  56. Stàubli, M. W., 1960, Nouvelle matiere d’inclusion hydrosoluble pour la cytologie électronique, С. R. Acad. Sci. 250: 1137.Google Scholar
  57. Wakefield, J. St. L., 1984, Epon plus silicon fluid, Electron Microsc. Soc. Am Bull. 14: 93.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • H. C. Aldrich
    • 1
  • H. H. Mollenhauer
    • 2
    • 3
  1. 1.Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleUSA
  2. 2.Veterinary Toxicology and Entomology Research LaboratoryUnited States Department of AgricultureCollege StationUSA
  3. 3.Department of Pathology and Laboratory Medicine College of MedicineTexas A & M UniversityCollege StationUSA

Personalised recommendations