Advertisement

Low-Temperature Scanning Electron Microscopy

  • Alan Beckett
  • Nick D. Read

Abstract

Low-temperature scanning electron microscopy (LTSEM) involves three main operational phases:
  1. 1.

    The specimen is rapidly frozen (“quench-frozen”) after which it is maintained either under vacuum or in a dry, argon atmosphere at a temperature below — 130°C (143K). This is generally considered to be the point above which the recrystallization of pure water will occur (e. g., see Talmon, 1982a, and Read et al., 1983, and references therein). Quench-freezing rapidly transforms freezable cellular and extracellular water into its solid state (ice) and the specimen is considered to be fully frozen-hydrated (FFH).

     
  2. 2.

    The FFH specimen may be fractured, dissected, or retained intact and, if required, it may be heated (etched) and/or coated. If the sample is etched, variable amounts of water are removed by sublimation and the specimen may then be considered partially freeze-dried (PFD).

     
  3. 3.

    The sample is observed at low temperature [approx. -175°C (98K)] on a temperature-controlled stage in the scanning electron microscope.

     

Keywords

Gate Valve Freeze Fracture Freeze Specimen Cold Stage Transfer Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, M., Dubochet, J., Lepault, J., McDowall, A. W., 1984, Cryo-electron microscopy of viruses, Nature (London) 308: 32–36.CrossRefGoogle Scholar
  2. Bald, W. В., 1975, A proposed method for specifying the temperature history of cells during the rapid cool-down of plant specimens, J. Exp. Bot. 26: 103–119.CrossRefGoogle Scholar
  3. Bald, W. В., 1984, The relative efficiency of cryogenic fluids used in the rapid quench cooling of biological samples, J. Microsc. (Oxford) 134: 261–270.CrossRefGoogle Scholar
  4. Beckett, A., 1982, Low temperature scanning electron microscopy of the bean rust fungus Uromyces viciae-fabae, Philips Electron Optics Bull. No. 117, pp. 6 - 8.Google Scholar
  5. Beckett, A., Porter, R., 1982, Uromyces viciae-fabae on Viciafaba: Scanning electron microscopy of frozen-hydrated material, Protoplasma 111: 28–37.CrossRefGoogle Scholar
  6. Beckett, A., Porter, R., Read, N. D., 1982, Low temperature scanning electron microscopy of fungal material, J. Microsc. (Oxford) 125: 193–199.CrossRefGoogle Scholar
  7. Beckett, A., Read, N. D., Porter, R., 1984, Variations in fungal spore dimensions in relation to preparatory techniques for light microscopy and scanning electron microscopy, J. Microsc. (Oxford) 136: 87–95.CrossRefGoogle Scholar
  8. Boyde, A., 1978, Pros and cons of critical point-drying and freeze-drying for SEM, Scanning Electron Microsc. 11: 303–314.Google Scholar
  9. Boyde, A., and Franc, F., 1981, Freeze-drying shrinkage of glutaraldehyde fixed liver, J. Microsc. ( Oxford ) 132: 75-86.Google Scholar
  10. Boyde, A., Franc, F., Maconnachie, E., 1981, Measurements of critical point shrinkage of glutaraldehyde fixed liver, Scanning 4: 69–82.CrossRefGoogle Scholar
  11. Brâten, T., 1978, High resolution scanning electron microscopy in biology: Artifacts caused by the nature and mode of application of the coating material, J. Microsc. (Oxford) 113: 53–59.CrossRefGoogle Scholar
  12. Campbell, R., 1983, Ultrastructural studies of Gaeumannomyces graminis in the water films on wheat roots and the effect of clay on the interaction between this fungus and antagonistic bacteria, Can. J. Microbiol. 29: 39–45.CrossRefGoogle Scholar
  13. Campbell, R., and Porter, R., 1982, Low temperature scanning electron microscopy of micro¬organisms in soil, Soil Biol. Biochem. 14: 241-245.Google Scholar
  14. Clegg, J. S., 1982, Alternative views on the role of water in cell function, in: Biophysics of Water ( F. Franks and S. F. Mathias, eds.), pp. 365–383, Wiley, New York.Google Scholar
  15. Colotelo, N., 1978, Fungal exudates, Can. J. Microbiol. 24: 1173–1181.PubMedCrossRefGoogle Scholar
  16. Cooke, R., Kuntz, I. D., 1974, The properties of water in biological systems, Annu. Rev. Biophys. Bioeng. 3: 95–126.PubMedCrossRefGoogle Scholar
  17. Dubochet, J., McDowall, A. W., Menge, В., Schmid, E. N., Lickfield, K. G., 1983, Electron microscopy of frozen-hydrated bacteria, J. Bacteriol. 155: 381–390.PubMedGoogle Scholar
  18. Echlin, P., 1971, The examination of biological material at low temperatures, Scanning Electron Microsc. 1: 225–232.Google Scholar
  19. Echlin, P., 1978, Low temperature scanning electron microscopy: A review, J. Microsc. (Oxford) 112: 47–61.CrossRefGoogle Scholar
  20. Echlin, P., Burgess, A., 1977, Cryofracturing and low temperature scanning electron microscopy of plant material, Scanning Electron Microsc. 1: 491–500.Google Scholar
  21. Echlin, P., Kaye, G., 1979, Thin films for high resolution conventional electron microscopy, Scanning Electron Microsc. 11: 21–30.Google Scholar
  22. Echlin, P., Moreton, R., 1973, The preparation, coating and examination of frozen biological materials in the SEM, Scanning Electron Microsc. 111: 325–332.Google Scholar
  23. Echlin, P., Moreton, R., 1976, Low temperature techniques for scanning electron microscopy, Scanning Electron Microsc. 1: 753–762.Google Scholar
  24. Echlin, P., Paden, R., Dronzek, В., Wayte, R., 1970, Scanning electron microscopy of labile biological material maintained under controlled conditions, Scanning Electron Microsc. 1970: 49–56.Google Scholar
  25. Echlin, P., Ralph, В., Weibel, E. R. (eds.), 1978, Low Temperature Biological Microscopy and Microanalysis, Royal Microscopical Society, Blackwell, Oxford.Google Scholar
  26. Echlin, P., Hayes, T. L., Pawley, J. В., 1979a, Freeze-fracture SEM of differentiating phloem parenchyma of Lemna minor L. (Duckweed), Beitr. Elektronenmikroskop. Direktabb. Oberfl. 12: 95–104.Google Scholar
  27. Echlin, P., Pawley, J. В., Hayes, T. L., 1979b, Freeze-fracture scanning electron microscopy of Lemna minor L. (Duckweed), Scanning Electron Microsc. 111: 69–76.Google Scholar
  28. Echlin, P., Lai, C., Hayes, T., Saubermann, A., 1980a, Cryofixation of Lemna minor roots for morphological and analytical studies, Cryo-Letters 1: 289–298.Google Scholar
  29. Echlin, P., Lai, B. E., Hayes, T. L., Hook, G., 1980b, Elemental analysis of frozen-hydrated differentiating phloem parenchyma in roots of Lemna minor L., Scanning Electron Microsc. 11: 383–394.Google Scholar
  30. Echlin, P., Lai, B. E., and Hayes, T. L., 1982, Low-temperature X-ray microanalysis of the differentiating vascular tissue in root tips of Lemna minor L., J. Microsc. (Oxford) 126:285- 306.Google Scholar
  31. Finney, J. L., 1977, The organization and function of water in protein crystals, Philos. Trans. R. Soc. London Ser. В 278: 3–32.CrossRefGoogle Scholar
  32. Finney, J. L., 1979, The organization and function of water in protein crystals, in: Water: A Comprehensive Treatise, Vol. 6 ( F. Franks, ed.), pp. 47–122, Plenum Press, New York.Google Scholar
  33. Franks, F., 1981, Biophysics and biochemistry of low temperatures and freezing, in: Effects of Low Temperature on Biological Membranes ( G. J. Morris and A. Clarke, eds.), pp. 3–19, Academic Press, New York.Google Scholar
  34. Fuchs, W., Fuchs, H., 1980, The use of frozen-hydrated bulk specimens for X-ray microanalysis, Scanning Electron Microsc. 11: 371–382.Google Scholar
  35. Fuchs, W., Lindemann, В., 1975, Electron beam X-ray microanalysis of frozen biological bulk specimens below 130K. I. Instrumentation and specimen preparation, J. Microsc. Biol. Cell 22: 227–232.Google Scholar
  36. Fuchs, W., Lindemann, В., Brombach, J. D., and Trôsch, W., 1978, Instrumentation and specimen preparation for electron beam X-ray microanalysis of frozen hydrated bulk specimens, J. Microsc. (Oxford) 112: 75–87.CrossRefGoogle Scholar
  37. Galpin, M. F., Jennings, D. H., Oates, K., Hobot, J. A., 1978, Localization by X-ray microanalysis of soluble ions, particularly potassium and sodium, in fungal hyphae, Exp. Mycol. 2: 258–269.CrossRefGoogle Scholar
  38. Hall, T. A., Gupta, B. L., 1984, The application of EDXS to the biological sciences, J. Microsc. (Oxford) 136: 193–208.CrossRefGoogle Scholar
  39. Harada, H., Okuzumi, H., 1973, Some applications of the freeze method with cryo-unit in scanning electron microscopy, JEOL Newslle (2): 11–15.Google Scholar
  40. Hart, C. A., 1979, Use of scanning electron microscope and cathodoluminescence in studying the application of pesticides in plants, Pestic. Sci. 10: 341–357.CrossRefGoogle Scholar
  41. Hasegawa, Y., Yotsumoto, H., 1972, Direct observation by the freeze method, JEOL News 10 (3): 22–23.Google Scholar
  42. Hasegawa, Y., Hasegawa, M., Suzuki, T., and Yotsumoto, H., 1974, Soft tissue observation by cryoscan fitted with vacuum evaporating device, JEOL News 12e (2): 26–27.Google Scholar
  43. Heide, H. G., 1982, On the irradiation of organic samples in the vicinity of ice, Ultramicroscopy 7: 301–302.CrossRefGoogle Scholar
  44. Ingold, B. T., 1928, Spore discharge in Podospora curvula, Ann. Bot. 42: 567–570.Google Scholar
  45. Jones, G. J., 1984, On estimating freezing times during tissue rapid freezing, J. Microsc. (Oxford) 136: 349–360.CrossRefGoogle Scholar
  46. Koch, G. R., 1975, Preparation and examination of specimens at low temperatures, in: Principles and Techniques of Scanning Electron Microscopy, Vol. 4 ( M. A. Hayat, ed.), pp. 1–33, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  47. Lepault, J., Booy, F. P., and Dubochet, J., 1983, Electron microscopy of frozen biological specimens, J. Microsc. (Oxford) 129: 89–102.CrossRefGoogle Scholar
  48. Lewis, E. R., Pawley, J. В., 1981, Direct SEM of frozen inner ear, Scanning 4: 131–140.CrossRefGoogle Scholar
  49. McLaughlin, D. J., Beckett, A., Yoon, K. S., 1985, Ultrastructure and evolution of ballistosporic basidiospores, Bot. J. Linn. Soc. 91: 253–271.CrossRefGoogle Scholar
  50. Marshall, A. T., 1980, Frozen-hydrated bulk specimens, in: X-Ray Microanalysis in Biology ( M. A. Hayat, ed.), pp. 167 - 196, University Park Press, Baltimore.Google Scholar
  51. Marshall, A. T., 1982, Application of ϕ (рz) curves and a windowless detector to the quantitative X- ray microanalysis of frozen-hydrated bulk biological specimens, Scanning Electron Microsc. 1: 243–260.Google Scholar
  52. Mersey, В., McCully, M. E., 1978, Monitoring of the course of fixation of plant cells, J. Microsc. (Oxford) 114: 49–76.CrossRefGoogle Scholar
  53. Nei, T., 1974, Cryotechniques, in: Principles and Techniques of Scanning Electron Microscopy, Vol. 1 ( M. A. Hayat, ed.), pp. 113–124, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  54. Nei, T., Fujikawa, S., 1977, Freeze-drying process of biological specimens observed with a scanning electron microscope, J. Microsc. (Oxford) 111: 137–142.CrossRefGoogle Scholar
  55. Nei, T., Yotsumoto, H., Hasegawa, Y., Nagasawa, Y., 1971, Direct observation of frozen specimens with a scanning electron microscope, J. Electron Microsc. 20: 202–203.Google Scholar
  56. Nei, T., Yotsumoto, H., Hasegawa, Y., Nagasawa, Y., 1973, Direct observation of frozen specimens with a scanning electron microscope, J. Electron Microsc. 22: 185–190.Google Scholar
  57. Oates, K., Potts, W. T. W., 1985, Electron beam penetration and X-ray excitation depth in ice, Micron Microsc. Acta 16: 1–4.CrossRefGoogle Scholar
  58. Pawley, J. В., Norton, J. T., 1978, A chamber attached to the SEM for fracturing and coating frozen biological samples, J. Microsc. (Oxford) 112: 169–182.CrossRefGoogle Scholar
  59. Pawley, J. В., Hook, G., Hayes, T. L., Lai, C., 1980, Direct scanning electron microscopy of frozen-hydrated yeast, Scanning 3: 219–226.CrossRefGoogle Scholar
  60. Read, N. D., 1983, A scanning electron microscopic study of the external features of perithecium development in Sordaria humana, Can. J. Bot. 61: 3217–3229.CrossRefGoogle Scholar
  61. Read, N. D., and Beckett, A., 1982, Fact or artifact under the SEM?, Proc. R. Microsc. Soc. 17: S35.Google Scholar
  62. Read, N. D., Beckett, A., 1983, Effects of hydration on the surface morphology of urediospores, J. Microsc. (Oxford) 132: 179–184.Google Scholar
  63. Read, N. D., Beckett, A., 1985, The anatomy of the mature perithecium in Sordaria humana and its significance for fungal multicellular development, Can. J. Bot. 63: 281–296.CrossRefGoogle Scholar
  64. Read, N. D., Porter, R., Beckett, A., 1983, A comparison of preparative techniques for the examination of the external morphology of fungal material with the scanning electron microscope, Can. J. Bot. 61: 2059–2078.CrossRefGoogle Scholar
  65. Richards, S. R., Turner, R. J., 1984, A comparative study of the techniques for the examination of biofilms by scanning electron microscopy, Water Res. 18: 767–773.CrossRefGoogle Scholar
  66. Richards, S. R., and Wilson, A. J., 1983, Rapid scanning electron microscope techniques to investigate colonization of biomass support particles in the captor process, Environ. Technol. Lett. 4: 183–188.CrossRefGoogle Scholar
  67. Robards, A. W., 1974, Ultrastructural methods for looking at frozen cells, Sci. Prog. (Oxford) 61: 1–40.Google Scholar
  68. Robards, A. W., Crosby, P., 1978, A transfer system for low temperature scanning electron microscopy, Scanning Electron Microsc. 11: 927–936.Google Scholar
  69. Robards, A. W., Crosby, P., 1979, A comprehensive freezing, fracturing and coating system for low temperature scanning electron microscopy, Scanning Electron Microsc. 11: 325–343.Google Scholar
  70. Talmon, Y., 1980, Rate of sublimation of ice by radiative heating in freeze-etching, in: Proceedings Electron Microscopy Society of America, 38th ( G. W. Bailey, ed.), pp. 618–619, Claitor, Baton Rouge.Google Scholar
  71. Talmon, Y., 1982a, Frozen hydrated specimens, Electron Microscopy 1982 1: 25–32.Google Scholar
  72. Talmon, Y., 1982b, Thermal and radiation damage to frozen hydrated specimens, J. Microsc. (Oxford) 125: 227–237.CrossRefGoogle Scholar
  73. Talmon, Y., 1984, Radiation damage to organic inclusions in ice, Ultramicroscopy 14: 305–316.CrossRefGoogle Scholar
  74. Talmon, Y., Thomas, E. L., 1977, Beam heating of a moderately thick cold stage specimen in the SEM/STEM, J. Microsc. (Oxford) 111: 151–164.CrossRefGoogle Scholar
  75. Talmon, Y., Davis, H. T., Scriven, L. E., Thomas, E. L., 1979, Mass loss and etching of frozen hydrated specimens, J. Microsc. (Oxford) 117: 321–332.CrossRefGoogle Scholar
  76. Taub, I. R., Eiben, K., 1968, Transient solvated electron, hydroxyl, and hydroperoxy radicals in pulse-irradiated crystalline ice, J. Chem. Phys. 49: 2499–2513.CrossRefGoogle Scholar
  77. Tokunaga, J., Tokunaga, M., 1973, Cryo-scanning microscopy of conidiospore formations in Aspergillus niger, JEOL Newslle (l):3–7.Google Scholar
  78. Umrath, W., 1983, Calculation of the freeze-drying time for electron-microscopical preparations, Mikroskopie 40: 9–34.PubMedGoogle Scholar
  79. Williams, M. A. J., Beckett, A., Read, N. D., 1985, Ultrastructural aspects of fruit body differentiation in Flammulina velutipes, in: Developmental Biology of Higher Fungi, ( D. Moore, L. A. Casselton, D. A. Wood, and J. C. Frankland, eds.), pp. 429–450, Cambridge University Press, Cambridge.Google Scholar
  80. Zierold, K., 1983, X-ray microanalysis of frozen-hydrated specimens, Scanning Electron Microsc. 11: 809–826.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Alan Beckett
    • 1
  • Nick D. Read
    • 1
  1. 1.Department of BotanyUniversity of BristolBristolEngland

Personalised recommendations