Colloidal Gold Labels for Immunocytochemical Analysis of Microbes

  • John Smit
  • William J. Todd


In considering the spectrum of research involving biochemical and genetic analysis of microorganisms, it is apparent that understanding the location and spatial orientation of the components studied often accelerates problem solving. Research on membrane structure and function, cell growth and development processes, and mechanisms of microbial pathogenesis is particularly likely to benefit from a visual determination of the position and movements of cell constituents. The application of molecular genetics and monoclonal antibody methods to vaccine development requires a clear understanding of what components are exposed on the surface of microbial pathogens and how they must be presented to the host immune system to be exploited as vaccines. Easy and rapid methods to determine such positional or structural information are needed.


Gold Particle Colloidal Gold Gold Label Colloidal Gold Solution Tetrachloroauric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, G. A., Yang, J., Wolken, K. W., 1983, Differential surface labeling and internalization of glucagon by peripheral leukocytes, J. Histochem. Cytochem. 31: 433–440.PubMedCrossRefGoogle Scholar
  2. Altman, L. G., Schneider, B. G., Papermaster, D. S., 1983, Rapid (4 hr) method for embedding tissues in Lowicryl for immunoelectron microscopy, J. Cell Biol. 97: 309a.Google Scholar
  3. Altman, L. G., Schneider, B. G., Papermaster, D. S., 1984, Rapid embedding of tissues in Lowicryl K4M for immunoelectron microscopy, J. Histochem. Cytochem. 32: 1217–1223.PubMedCrossRefGoogle Scholar
  4. Armbruster, B. L., Carlemalm, E., Chiovetti, R., Garavito, R. M., Hobot, J. A., Kellenberger, E., Villiger, W., 1982, Specimen preparation for electron microscopy using low temperature embedding resins, J. Microsc. (Oxford) 126: 77–85.CrossRefGoogle Scholar
  5. Armbruster, B. L., Garavito, R. M., Kellenberger, E., 1983, Dehydration and embedding temperatures affect the antigenic specificity of tubulin and immunolabeling by the protein A-colloidal gold technique, J. Histochem. Cytochem. 31: 1380–1384.PubMedCrossRefGoogle Scholar
  6. Bayer, E. A., Wilchek, M., 1978, The avidin-biotin complex as a tool in molecular biology, Trends Biochem. Sci., 3: 257–259.Google Scholar
  7. Beesley, J. E., Orpin, A., Adlam, C., 1982, A comparison of immunoferritin, immunoenzyme and gold-labelled protein A methods for the localization of capsular antigen on frozen thin sections of the bacterium, Pasteurella haemolytica, Histochem. J. 14: 803–810.PubMedCrossRefGoogle Scholar
  8. Beesley, J. E., Orpin, A., Adlam, C., 1984, An evaluation of the conditions necessary for optimal protein A-gold labelling of capsular antigen in ultrathin methacrylate sections of the bacterium Pasteurella haemolytica, Histochem. J. 16: 151–163.PubMedCrossRefGoogle Scholar
  9. Bendayan, M., 1982a, Protein A-gold and enzyme gold: Two novel affinity techniques for ultra- structural localization of macromolecules, Int. Congr. Electron Microsc. 2: 427–439.Google Scholar
  10. Bendayan, M., 1982b, Double immunocytochemical labeling applying the protein A-gold technique, J. Histochem. Cytochem. 30: 81–85.PubMedCrossRefGoogle Scholar
  11. Bendayan, M., 1984, Concentration of amylase along its secretory pathway in the pancreatic acinar cell as revealed by high resolution immunocytochemistry, Histochem. J. 16: 85–108.PubMedCrossRefGoogle Scholar
  12. Bendayan, M., Puvion, E., 1984, Ultrastructural localization of nucleic acid through several cytochemical techniques on osmium-fixed tissues, J. Histochem. Cytochem. 32: 1185–1191.PubMedCrossRefGoogle Scholar
  13. Bendayan, M., Zollinger, M., 1983, Ultrastructural localization of antigenic sites on osmium- fixed tissues applying the protein A-gold technique, J. Histochem. Cytochem. 31: 101–109.PubMedCrossRefGoogle Scholar
  14. Berod, A., Hartman, B. K., Pujol, D., 1981, Importance of fixation in immunohistochemistry: Use of formaldehyde solutions at variable pH for the localization of tyrosine hydroxylase, J. Histochem. Cytochem. 29: 844–850.PubMedCrossRefGoogle Scholar
  15. Brada, D., Roth, J., 1984, “Golden blot”—Detection of polyclonal and monoclonal antibodies bound to antigens to nitrocellulose by protein-a-gold complexes, Anal. Biochem. 142:79– 83.Google Scholar
  16. Breese, S. S., Hsu, A. C., 1971, Techniques of ferritin-tagged antibodies, in: Methods in Virology, Vol. 5 ( K. Maramorosch and H. Koprowski, eds.), pp. 399–422, Academic Press, New York.Google Scholar
  17. Carlemalm, E., Garavito, R. M., Villiger, W., 1980, Advances in low temperature embedding for electron microscopy, Electron Microsc. 2: 656–657.Google Scholar
  18. Childs (Moriarty), G. V., 1982, Use of Immunocytochemical techniques in cellular endocrinology, in: Electron Microscopy in Biology, Vol. 2 ( J. D. Griffith, ed.), pp. 107–174, Wiley, New York.Google Scholar
  19. Cunningham, V. L., Walker, K. W., Ackerman, G. A., 1984, Insulin complex binding to human peripheral and mitogen-stimulated lymphocytes, J. Histochem. Cytochem. 32: 517 - 525.PubMedCrossRefGoogle Scholar
  20. Danscher, G., Rytter-Norgaard, J. O., 1983, Light microscopic visualization of colloidal gold on resin-embedded tissue, J. Histochem. Cytochem. 31: 1394–1398.PubMedCrossRefGoogle Scholar
  21. de Bruijn, W. C., Emeis, J. J., Vermeer, B. J., 1980, The application of analytical electron microscopy in the localization of individual LDL-binding sites on cell surfaces, Artery 8: 281–287.PubMedGoogle Scholar
  22. De Harven, E., Leung, R., Christensen, H., 1984, A novel approach for scanning electron microscopy of colloidal gold-labeled cell surfaces, J. Cell Biol. 99: 53–57.PubMedCrossRefGoogle Scholar
  23. De Mey, J., 1983a, A critical review of light and electron microscopic immunocytochemical techniques used in neurobiology, J. Neurosci. Methods 7: 1–18.Google Scholar
  24. De Mey, J., 1983b, Colloidal gold probes in immunocytochemistry, in: Immunocytochemistry: Practical Applications in Pathology and Biology ( J. M. Polak and S. Van Noorden, eds.), pp. 82–112, Wright, Bristol.Google Scholar
  25. De Mey, J., Moeremans, M., 1986, Preparation of colloidal gold probes and their use as markers in electron microscopy, in: Advances in Biological Electron Microscopy, Vol. Ill, Springer- Verlag, Berlin, in press.Google Scholar
  26. De Mey, J., Moeremans, M., Geuens, G., Nuydens, R., De Brabander, M., 1981, High resolution light and electron microscopic localization of tubulin with the IGS (immuno gold staining) method, Cell Biol Int. Rep. 5: 889–899.Google Scholar
  27. Dudek, R. W., Childs, G. V., Boyne, A. F., 1982, Quick-freezing and freeze-drying in preparation for high quality morphology and immunocytochemistry at the ultrastructural level: Application to pancreatic beta cell, J. Histochem. Cytochem. 30: 129–138.PubMedCrossRefGoogle Scholar
  28. Dutton, A. H., Tokuyasu, A. T., Singer, S. J., 1979, Iron-dextran antibody conjugates: General method for simultaneous staining of two components in high resolution immunoelectron microscopy, Proc. Natl. Acad. Sci. USA 76: 3392 - 3396.PubMedCrossRefGoogle Scholar
  29. Eldred, W. D., Zucker, C., Karten, H. J., Yazulla, S., 1983, Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry, J. Histochem. Cytochem. 31: 285–292.PubMedCrossRefGoogle Scholar
  30. Faulk, W. P., Taylor, G. M., 1971, An immunocolloid method for the electron microscope, Immunochemistry 8: 1081–1083.PubMedCrossRefGoogle Scholar
  31. Fegia-Valasco, A., Arauz-Contrerces, J., 1981, Ruthenium red-mediated osmium binding for examining uncoated biological material under the scanning electron microscope, Stain Technol. 56: 71–78Google Scholar
  32. Fournier-Lafleche, D., Chang, A., Benichou, J. C., Ryter, A., 1975, Immuno-labelling in frozen ultrathin sections of bacteria, J. Microsc. Biol. Cell. 23: 17–28.Google Scholar
  33. Frens, G., 1973, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature Phys. Sci. 241: 20–22.Google Scholar
  34. Furlan, M., Horisberger, M., Perret, B. A., Beck, E. A., 1981, Binding of colloidal gold granules, coated with bovine factor VIII, to human platelet membranes, Br. J. Haematol. 48: 319–324.PubMedGoogle Scholar
  35. Garaud, J. C., Doffoel, M., Stock, C., Grenier, J. F., 1982, Are “G” cells the only source of gastrin in the human antrum?, Biol. Cell 49: 165–176.Google Scholar
  36. Geoghegan, W. D., Ackerman, G. A., 1977, Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: A new method, theory and application, J. Histochem. Cytochem. 25: 1187–1200.PubMedCrossRefGoogle Scholar
  37. Geoghagen, W. D., Ambegaonkar, S., Calvanico, N. J., 1980, Passive gold agglutination: An alternative to passive hemagglutination, J. Immunol. Methods 34: 11–21.CrossRefGoogle Scholar
  38. Geuze, H. J., Slot, J. W., van der Ley, P., Scheffer, R. B. T., 1981, Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen tissue sections, J. Cell Biol. 89: 653–665.PubMedCrossRefGoogle Scholar
  39. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Lodish, H. F., Schwartz, A. L., 1983, Intracellular site of asialoglycoprotein receptor-ligand uncoupling: Double-label immunoelectron microscopy during receptor-mediated endocytosis, Cell 32: 277–287.PubMedCrossRefGoogle Scholar
  40. Goding, J., 1978, Use of staphylococcal protein A as an immunological reagent, J. Immunol. Methods 20: 241–253.PubMedCrossRefGoogle Scholar
  41. Gonda, M. A., Gelden, R. V., Hsu, A. C., 1979, An unlabelled antibody molecule technique using hemocyanin for the identification of type B and type B retrovirus envelope and cell surface antigens by correlative fluorescence, transmission electron, and scanning electron microscopy, J. Histochem. Cytochem. 27: 1445–1454.PubMedCrossRefGoogle Scholar
  42. Goodman, S. L., Hodges, G, M,, Trejdosiewicz, L. K., Livingston, D. C., 1979, Colloidal gold probes—A further evaluation, Scanning Electron Microsc. 619–628.Google Scholar
  43. Goodman, S. L., Hodges, G. M., Livingston, D. C., 1980, A review of the colloidal gold marker system, Scanning Electron Microsc. 1980 (II): 133–146.Google Scholar
  44. Goodman, S. L., Hodges, G. M., Trejdosiewicz, L. K., Livingston, D. C., 1981, Colloidal gold markers and probes for routine application of microscopy, J. Microsc. (Oxford) 123: 201–213.CrossRefGoogle Scholar
  45. Green, N. M., 1975, Avidin, Adv. Protein Chem. 29: 85–133.CrossRefGoogle Scholar
  46. Haberer, K., Frosch, D., 1982, Lateral mobility of membrane-bound antibodies on the surface of Acholeplasma laidlawii: Evidence for virus-induced cell fusion in a procaryote, J. Bacteriol. 152: 471–478.PubMedGoogle Scholar
  47. Handley, D. A., Chien, S., 1983, Colloidal gold: A pluripotent receptor probe (41697), Proc. Soc. Exp. Biol. Med. 174: 1–11.PubMedGoogle Scholar
  48. Handley, D. A., Stifano, T. M., Saunders, R. N., 1982, Cellular events of platelet receptor binding of colloidal gold-thrombin probes, Fed. Proc. 41: 899a.Google Scholar
  49. Hicks, D., Molday, R. S., 1984, Analysis of cell labelling for scanning and transmission electron microscopy, in: The Science of Biological Specimen Preparation for Microscopy and Microanalysis ( J.-P. Revel, T. Barnard, and G. H. Haggis, eds.), pp. 203–219, SEM, Inc., Chicago.Google Scholar
  50. Holgate, C. S., Jackson, P., Cowen, P. N., Bird, B. C., 1983, Immunogold-silver staining: New method of immunostaining with enhanced sensitivity, J. Histochem. Cytochem. 31:938– 944.Google Scholar
  51. Horisberger, M., 1979, Evaluation of colloidal gold as a cytochemical marker for transmission and scanning electron microscopy, Biol. Cell. 36: 253–258.Google Scholar
  52. Horisberger, M., 1981, Colloidal gold as a cytochemical marker in electron microscopy, Gold Bull. 14: 90–94.CrossRefGoogle Scholar
  53. Horisberger, M., 1981b, Colloidal gold: A cytochemical marker for light and fluorescent microscopy and for transmission and scanning electron microscopy, Scanning Electron Microsc. 11:9– 31.Google Scholar
  54. Horisberger, M., 1983, Colloidal gold as a tool in molecular biology, Trends Biochem. Sci. 8:395– 397.Google Scholar
  55. Horisberger, M., Rosset, J., 1977, Colloidal gold, a useful marker for transmission and scanning electron microscopy, J. Histochem. Cytochem. 25: 295–305.PubMedCrossRefGoogle Scholar
  56. Horisberger, M., Vonlanthen, M., 1979, Fluorescent colloidal gold: A cytochemical marker for fluorescent and electron microscopy, Histochemistry 64: 115–118.Google Scholar
  57. Horisberger, M., Rosset, J., Bauer, H., 1975, Colloidal gold granules as markers for cell surface receptors in the scanning electron microscope, Experientia 31: 1147–1149.PubMedCrossRefGoogle Scholar
  58. Horisberger, M., Farr, D. R., Vonlanthen, M., 1978, Ultrastructural localization of (3-D- galactan in the nuclei of the myxomycete Physarum polycephalum, Biochim. Biophys. Acta 542: 308–314.PubMedCrossRefGoogle Scholar
  59. Hsu, A. C., 1962, Ferritin-labelled antigens and antibodies, in: Methods in Immunology and Immu- nochemistry, Vol. I ( C. A. Williams, and M. W. Chase, eds.) pp. 397–404, Academic Press, New York.Google Scholar
  60. Jackowski, S., Edwards, H. H., Davis, D., Rock, B. O., 1985, Localization of acyl carrier protein in Escherichia coli, J. Bacteriol. 162: 5–8.PubMedGoogle Scholar
  61. Keller, G.-A., Tokuyasu, K. T., Dutton, A. H., Singer, S. J., 1984, An improved procedure for immunoelectron microscopy: Ultrathin plastic embedding of immunolabeled ultrathin frozen sections, Proc. Natl. Acad. Sci. USA 81: 5744–5747.PubMedCrossRefGoogle Scholar
  62. Kent, S. P., Allen, F. B., 1981, Antigen-coated gold particles containing radioactive gold in the demonstration of cell surface molecules, Histochem. J. 72: 83–90.CrossRefGoogle Scholar
  63. Kent, S. P., Wilson, D. V., 1975, Polysaccharides as labels for antibodies in electron microscopy, J. Histochem. Cytochem. 23: 169–173.PubMedCrossRefGoogle Scholar
  64. Kondo, H., 1984, Polyethylene glycol (PEG) embedding and subsequent de-embedding as a method for the structural and immuocytochemical examination of biological specimens by electron microscopy, J. Electron Microsc. Tech. 1: 227–241.CrossRefGoogle Scholar
  65. Korpela, J., Salonen, E. M., Kuusela, P., Sarvas, M., Vaheri, A., 1984, Binding of avidin to bacteria and to the other membrane porin of Escherichia coli, FEMS 22: 3–10.CrossRefGoogle Scholar
  66. Larsson, L.-I., 1979, Simultaneous ultrastructural demonstration of multiple peptides in endocrine cells by a novel immunocytochemical method, Nature (London) 282: 743–746.CrossRefGoogle Scholar
  67. Levine, M. M., Ristaino, P., Marley, G., Smyth, C., Knutton, S., Boedeker, E., Black, R., Young, C., Clements, M. L., Cheney, C., Patnaik, R., 1984, Coli surface antigens 1 and 3 of colonization factor antigen II-positive enterotoxigenic Escherichia coli: Morphology, purification, and immune responses in humans, Infect. Immun. 44: 409–420.PubMedGoogle Scholar
  68. Mace, M. L., Jr., Van, N. T., Conn, M. P., 1977, Electron microscopic localization of DNA- dependent RNA polymerase binding sites on DNA using enzyme immobilized on colloidal gold, Cell Biol. Int. Rep. 1: 527–534.PubMedCrossRefGoogle Scholar
  69. Mannweiler, K., Hohenberg, H., Bohn, W., Rutter, G., 1982, Protein A gold particles as markers in replica immunocytochemistry: High resolution electron microscope investigations of plasma membrane surfaces, J. Microsc. (Oxford) 126: 145–149.CrossRefGoogle Scholar
  70. Moeremans, M., Daneels, G., Van Dijck, A., Langanger, G., De Mey, J., 1984, Sensitive visualization of antigen-antibody reactions in dot and blot immune overlay assays with immu- nogold and immunogold/silver staining, J. Immunol. Methods 74: 353–360.PubMedCrossRefGoogle Scholar
  71. Montesano, R., Roth, J., Robert, A., Orci, L., 1982, Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins, Nature (London) 296:651– 653.Google Scholar
  72. Morris, R. E., Saelinger, B. B., 1984, Visualization of intracellular trafficking: Use of biotiny- lated ligands in conjunction with avidin-gold colloids, J. Histochem. Cytochem. 32: 124–128.PubMedCrossRefGoogle Scholar
  73. Muhlpfordt, H., 1982, The preparation of colloidal gold particles using tannic acid as an additional reducing agent, Experientia 38: 1127–1128.CrossRefGoogle Scholar
  74. Muhlradt, P. F., Menzel, J., Golecki, J. R., Speth, V., 1973, Outer membrane of Salmonella: Sites of export of newly synthesized lipopolysaccharide on the bacterial surface, Eur. J. Biochem. 35: 471–481.PubMedCrossRefGoogle Scholar
  75. Muller, L. L., Jacks, T. J., 1975, Rapid chemical dehydration of samples for electron microscopic examination, J. Histochem. Cytochem. 23: 107–110.PubMedCrossRefGoogle Scholar
  76. Peters, K. R., Rutter, G., Gschwenden, H. H., Heller, W., 1978, Derivatized silica spheres as immunospecific markers for high resolution labelling in electron microscopy, J. Cell Biol. 78: 309–318.PubMedCrossRefGoogle Scholar
  77. Pinto da Silva, P., Kan, F. W. K., 1984, Label-fracture: A method for high resolution labeling of cell surfaces, J. Cell Biol. 99: 1156–1161.CrossRefGoogle Scholar
  78. Polak, J. M., Kendall, P. A., Heath, B. M., Pearse, A. G. E., 1972, Carbodiimide fixation for electron microscopy and immunoelectron cytochemistry, Experientia 28: 368–370.PubMedCrossRefGoogle Scholar
  79. Pratten, M. K., Williams, A. E., Lloyd, J. B., 1977, A quantitative study of pinocytosis and intracellular proteolysis in rat peritoneal macrophages, Biochem. J. 168: 365–372.PubMedGoogle Scholar
  80. Rembaun, A., Dreyer, W. A., 1980, Immunomicrospheres: Reagents for cell labelling and separation, Science 208: 364–368.CrossRefGoogle Scholar
  81. Robenek, H., Hesz, A., 1983, Dynamics of low density lipoprotein receptors in the plasma membrane of cultured human skin fibroblasts as visualized by colloidal gold in conjunction with surface replicas, Eur. J. Cell Biol. 31: 275–282.PubMedGoogle Scholar
  82. Robinson, E. N., Jr., McGee, Z. A., Kaplan, J., Hammond, E. M., Larson, J. K., Buchanan, T. M., Schoolnik, G. K., 1984, Ultrastructural localization of specific gonococcal mac- romolecules with antibody-gold sphere immunological probes, Infect. Immun. 46: 361–366.Google Scholar
  83. Rohde, M., Mayer, F., Meyer, O., 1984, Immunocytochemical localization of carbon monoxide oxidase in Pseudomonas carboxydovorans: The enzyme is attached to the inner aspect of the cytoplasmic membrane, J. Biol. Chem. 259: 14788–14792.PubMedGoogle Scholar
  84. Romano, E. L., Romano, M., 1977, Staphylococcal protein A bound to colloidal gold: A useful reagent to label antigen-antibody sites in electron microscopy, Immunochemistry 14: 711–715.CrossRefGoogle Scholar
  85. Roth, J., 1982a, The preparation of protein A-goId complexes with 3 nm and 15 nm gold particles and their use in labelling multiple antigens on ultra-thin sections, Histochem. J. 14: 791–801.PubMedCrossRefGoogle Scholar
  86. Roth, J., 1982b, Applications of immunocolloids in light microscopy: Preparation of protein A-silver and protein A-gold complexes and their application for localization of single and multiple antigens in paraffin sections, J. Histochem. Bytoehem. 30: 691–696.CrossRefGoogle Scholar
  87. Roth, J., 1983a, Applications of immunocolloids in light microscopy. II. Demonstration of lectin- binding sites in paraffin sections by the use of lectin-gold or glycoprotein-gold complexes, J. Histochem. Cytochem. 31: 547–552.PubMedCrossRefGoogle Scholar
  88. Roth, J., 1983b, Application of lectin-gold complexes for electron microscopic localization of glycoconjugates on thin sections, J. Histochem. Cytochem. 31: 987–999.PubMedCrossRefGoogle Scholar
  89. Roth, J., Binder, M., 1978, Colloidal gold, ferritin and peroxidase as markers for electron microscopic double labeling lectin techniques, J. Histochem. Cytochem. 26: 163–169.PubMedCrossRefGoogle Scholar
  90. Roth, J., Lucocq, J. M., Charest, P. M., 1984, Light and electron microscopic demonstration of sialic acid residues with the lectin from Umax flavus: A cytochemical affinity technique with the use of fetuin-gold complexes, J. Histochem. Cytochem. 32: 1167–1176.PubMedCrossRefGoogle Scholar
  91. Schenkman, S., Couture, E., Schwartz, M., 1983, Monoclonal antibodies reveal Lam B antigenic determinants on both faces of the Escherichia coli outer membrane, J. Bacteriol. 155: 1382–1392.PubMedGoogle Scholar
  92. Schwab, M. E., Thoenen, H., 1978, Selective binding, uptake and retrograde transport of tetanus toxin by nerve terminals in the rat iris, J. Cell Biol. 77: 1–13.PubMedCrossRefGoogle Scholar
  93. Singer, S. J., McLean, I. D., 1963, Ferritin-antibody conjugates as stain for electron microscopy, Lab. Invest. 12: 1002–1008.PubMedGoogle Scholar
  94. Singer, S. J., Schick, A. I., 1961, The properties of specific stains for electron microscopy prepared by conjugation of antibody with ferritin, J. Biophys. Cytol. 9: 519.PubMedCrossRefGoogle Scholar
  95. Slot, J. W., Geuze, H. J., 1981, Sizing of protein A–colloidal gold probes for immunoelectron microscopy, J. Cell Biol. 90: 533–536.PubMedCrossRefGoogle Scholar
  96. Smit, J., Agabian, N., 1982, Cell surface patterning and morphogenesis: Biogenesis of a periodic surface array during Caulobacter development, J. Cell Biol. 95: 41–49.PubMedCrossRefGoogle Scholar
  97. Smit, J., Nikaido, H., 1978, Outer membrane of gram-negative bacteria. XVIII. Electron microscopic studies on porin insertion sites and growth of cell surface of Salmonella typhimurium, J. Bacteriol. 135: 687–702.PubMedGoogle Scholar
  98. Smit, J., Hermodson, M., Agabian, N., 1981, Caulobacter crescentus pilin: Purification, chemical characterization, and NH2-terminal amino acid sequence of a structural protein regulated during development, J. Biol. Chem. 256: 3092–3097.PubMedGoogle Scholar
  99. Sternberger, L. A., 1967, Electron microscope immunocytochemistry: A review, J. Histochem. Cytochem. 15: 139–159.CrossRefGoogle Scholar
  100. Sternberger, L. A., Hardy, P. H., Cuculis, J. S., Meyer, H. G., 1970, The unlabelled antibody- enzyme method of immunocytochemistry: Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antiperoxidase) and its role in identification of spirochetes, J. Histochem. Cytochem. 18: 315.PubMedCrossRefGoogle Scholar
  101. Takamiya, H., Batsford, S., Geldenblom, H., Vogt, A., 1979, Immunoelectron microscopic localization of lipopolysaccharide antigens on ultrathin sections of Salmonella typhimurium, J. Bacteriol. 140: 261–266.PubMedGoogle Scholar
  102. Tapia, F. J., Varndell, I. M., Probert, L., De Mey, J., Polak, J. M., 1983, Double immunogold staining method for the simultaneous ultrastructural localization of regulatory peptides, J. Histochem. Cytochem. 31: 977–981.PubMedCrossRefGoogle Scholar
  103. Tinglu, G., Ghosh, A., Ghosh, B. K., 1984, Subcellular localization of alkaline phosphatase in Bacillus licheniformis 149/B by immunoelectron microscopy with colloidal gold, J. Bacteriol. 159: 668–677.PubMedGoogle Scholar
  104. Tokuyasu, A. T., 1984, Immuno-cryoultramicrotomy, in: I mmunolabelling for Electron Microscopy ( J. M. Polak and I. M. Varndell, eds.), pp. 71–82, Elsevier, Amsterdam.Google Scholar
  105. Toison, N. D., Boothroyd, B., and Hopkins, C. R., 1981, Cell surface labelling with gold colloid particulates: The use of avidin and staphylococcal protein A-coated gold in conjunction with biotin and Fc-bearing ligands, J. Microsc. (Oxford) 123: 215–226.CrossRefGoogle Scholar
  106. Turkevich, J., Stevenson, P. C., Hillier, J., 1955, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc. 11: 55–75.CrossRefGoogle Scholar
  107. Vos-Scheperkeuter, G. H., Pas, E., Brakenhoff, G. J., Nanninga, N., Witholt, B., 1984, Topography of the insertion of LamB protein into the outer membrane of Escherichia coli wild- type and laclam B cells, J. Bacteriol. 159: 440–447.PubMedGoogle Scholar
  108. Walker, P. D., Beesley, J. E., 1982, Trends in the localization of bacterial antigens by immu- noelectron microscopy, Ann. N.Y. Acad. Sci. 420: 411–421.Google Scholar
  109. Willingham, M. C., Yamada, S. S., 1979, Development of a new primary fixative for electron microscopic immunocytochemical localization of intracellular antigens in cultured cells, J. Histochem. Cytochem. 27: 947–960.PubMedCrossRefGoogle Scholar
  110. Winlove, C. P., Davis, J., Iacovides, A., Chabanel, A., 1981, Radioactive gold colloid as a tracer of macromolecule transport, Biorheology 18: 569–578.PubMedGoogle Scholar
  111. Wolosewick, J. J., 1980, The application of polyethylene glycol (PEG) to electron microscopy, J. Cell Biol. 86: 675–681.PubMedCrossRefGoogle Scholar
  112. Wolosewick, J. J., De Mey, J., Meininger, V., 1983, Ultrastructural localization of tubulin and actin in polyethylene glycol-embedded rat seminiferous epithelium by immunogold staining, J. Cell Biol. 49: 219–224.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John Smit
    • 1
  • William J. Todd
    • 2
    • 3
  1. 1.Naval Biosciences Laboratory School of Public HealthUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Veterinary Science Louisiana Agricultural Experiment StationLouisiana State University Agricultural CenterBaton RougeUSA
  3. 3.Department of Veterinary Microbiology and Parasitology School of Veterinary MedicineLouisiana State UniversityBaton RougeUSA

Personalised recommendations