Cytochemical Techniques for the Subcellular Localization of Enzymes in Microorganisms

  • Martha J. Powell


Methods to localize intracellular sites of enzymes with electron microscopy grew directly from light microscopic histochemistry. Techniques, such as Gomori’s (1952) for acid phosphatase activity, which had as end products heavy metal ions with sufficient mass to scatter electrons, were directly applicable for electron microscopy if noncoagulative fixatives were used. Introduction of catalytic osmiophilic polymer generation (Hanker et al., 1972a) made substrates previously valuable only for light microscopy useful for electron microscopy. In the most widely used strategies for electron microscopic localization of enzymes in microorganisms, enzymes are not viewed directly, but reactions with end products impart electron density to the sites of enzyme activity. There are numerous strategies for the cytochemical localization of enzymes, and this chapter will emphasize three of these: (1) ion capture and precipitation of products; (2) ferricyanide reduction and product amplification; and (3) oxidative polymerization of diaminobenzidine. Thus, this discussion is not exhaustive of all techniques used for microorganisms but is illustrative of rationales used in attempting to identify sites of enzyme activities.


Acid Phosphatase Reaction Medium Acid Phosphatase Activity Aryl Sulfatase Ultrastructural Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aliaga, G. R., Ellzey, J. T., 1984, Ultrastructural localization of acid phosphatase and alkaline phosphatase within oogonia of Achlya recurva, Mycologia 76: 85–98.CrossRefGoogle Scholar
  2. Armentrout, V. N., Hànssler, G., Maxwell, D. P., 1976, Acid phosphatase localization in the fungus Whetzelinia sclerotiorum, Arch. Microbiol. 107: 7–14.PubMedCrossRefGoogle Scholar
  3. Bal, A. K., 1974, Cellulase, in: Electron Microscopy of Enzymes: Principles and Methods, Vol. 3 ( M. A. Hayat, ed.), pp. 68–76, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  4. Barka, T., Anderson, P., 1962, Histochemical methods for acid phosphatase using hexazonium pararosanilin as coupler, J. Histochem. Cytochem. 10: 741–753.CrossRefGoogle Scholar
  5. Beezley, B. B., Gruber, P. J., Frederick, S. E., 1976, Cytochemical localization of glycolate dehydrogenase in mitochondria of Chlamydomonas, Plant Physiol. 58: 315–319.PubMedCrossRefGoogle Scholar
  6. Beier, K., Fahimi, H. D., 1985, Automatic determination of labeling density in protein A-gold immunocytochemical preparations using an image analyzer, Histochemistry 82: 99–100.PubMedCrossRefGoogle Scholar
  7. Borgers, M., DeNollin, S., Thorné, F., Van Belle, H., 1977, Cytochemical localization of NADH oxidase in Candida albicans, J. Histochem. Cytochem. 25: 193–199.PubMedCrossRefGoogle Scholar
  8. Briggs, R. T., Brath, D. B., Karnovsky, M. L., Karnovsky, M. J., 1975, Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method, J. Cell Biol. 67: 566–589.PubMedCrossRefGoogle Scholar
  9. Brown, R. M., Romanovicz, D. W., 1976, Biogenesis and structure of Golgi-derived cellulosic scales in Pleurochrysis. I. Role of the endomembrane system in scale assembly and exocytosis, Appl. Polym. Symp. 28: 537–585.Google Scholar
  10. Burke, J. J., Trelease, R. N., 1975, Cytochemical demonstration of malate synthase and glycolate oxidase in microbodies of cucumber cotyledons, Plant Physiol. 56: 710–717.PubMedCrossRefGoogle Scholar
  11. Chapman, C. M., Lowenberg, J. R., Schaller, M. J., Piechura, J. E., 1983, Ultrastructural localization of cellulase in Trichoderma reesei using immunocytochemistry and enzyme cytochemistry, J. Histochem. Cytochem. 31: 1363–1366.PubMedCrossRefGoogle Scholar
  12. Costerton, J. W., Marcks, I., 1977, Localization of enzymes in procaryotic cells, in: Electron Microscopy of Enzymes: Principles and Methods, Vol. 5 ( M. A. Hayat, ed.), pp. 98–134, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  13. Danscher, G., Rytter-Nôrgaard, J. O., 1983, Light microscopic visualization of colloidal gold on resin-embedded tissue, J. Histochem. Cytochem. 31: 1394–1398.PubMedCrossRefGoogle Scholar
  14. Dargent, R., Touze-Soulet, J. M., Rami, J., Montant, B., 1982, Cytochemical characterization of Golgi apparatus in some filamentous fungi, Exp. Mycol. 6: 101–114.CrossRefGoogle Scholar
  15. Doonan, B. B., and Jensen, T. E., 1980, Ultrastructural localization of alkaline phosphatase in the cyanobacteria Coccochloris peniocytis and Anabaena cylindrica, Protoplasma 102: 189–197.CrossRefGoogle Scholar
  16. Dorward, D. W., and Powell, M. J., 1980, Microbodies in Monoblepharella sp., Mycologia 72: 549 - 557.CrossRefGoogle Scholar
  17. DuBois, J. D., Roberts, K. R., and Kapustka, L. A., 1984, Polyphosphate body and acid phosphatase localization in Nostoc sp., Can. J. Microbiol. 30: 8–15.CrossRefGoogle Scholar
  18. Eichhorn, S. E., Perry, J. W., and Evert, R. F., 1981, Preparation Guide for Laboratory Topics in Botany, p. 65, Worth Publishers, New York.Google Scholar
  19. Essner, E., 1973, Phosphatases, in: Electron Microscopy of Enzymes: Principles and Methods, Vol. 1 ( M. A. Hayat, ed.), pp. 44 - 76, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  20. Esteve, J. C., 1970, Distribution of acid phosphatase in Paramecium caudatum: Its relations with the process of digestion, J. Protozool. 17: 24–35.PubMedGoogle Scholar
  21. Feeney, D. M., and Triemer, R. E., 1979, Cytochemical localization of Golgi marker enzymes in Allomyces, Exp. Mycol. 3: 157-163.Google Scholar
  22. Gezelius, K., 1971, Acid phosphatase localization in myxamoebae of Dictyostelium discoideum, Arch. Mikrobiol. 75: 327-337.Google Scholar
  23. Gierczak, J. S., Stevens, F. J., Pankratz, H. S., Uffen, R. L., 1982, Cytochemical localization and measurement of aerobic 3,3′-diaminobenzidine oxidation reactions in photosynthetically grown Rhodospirillum rubrum, J. Histochem. Cytochem. 30: 901–907.PubMedCrossRefGoogle Scholar
  24. Goldfischer, S., Essner, E., Novikoff, A. B., 1964, The localization of phosphatase activities at the level of ultrastructure, J. Histochem. Cytochem. 12: 72–95.PubMedCrossRefGoogle Scholar
  25. Gomori, G., 1952, Microscopic Histochemistry: Principles and Practice, University of Chicago Press, Chicago.Google Scholar
  26. Gruber, P. J., Frederick, S. E., 1977, Cytochemical localization of glycolate oxidase in micro- bodies of Klebsormidium, Planta 135: 45–49.CrossRefGoogle Scholar
  27. Hall, J. L., Browning, A. J., Harvey, D. M. R., 1980, The validity of the lead precipitation technique for the localization of ATPase activity in plant cells, Protoplasma 104: 193–200.CrossRefGoogle Scholar
  28. Hand, A. R., 1975, Ultrastructural localization of L-a-hydroxy acid oxidase in rat liver peroxisomes, Histochemistry 41: 195–206.PubMedCrossRefGoogle Scholar
  29. Hanker, J. S., Anderson, W. A., Bloom, F. E., 1972a, Osmiophilic polymer generation catalysis by transition metal compounds in ultrastructural cytochemistry, Science 175: 991–993.PubMedCrossRefGoogle Scholar
  30. Hanker, J. S., Yates, P. E., Clapp, D. H., and Anderson, W. A., 1972b, New methods for the demonstration of lysosomal hydrolases by the formation of osmium blacks, Histochemie 30: 201–214.PubMedGoogle Scholar
  31. Hanker, J. S., Thornburg, L. P., Yates, P. E., and Romanovicz, D. K., 1975, The demonstration of arylsulfatases with 4-nitro-l,2-benzenediol mono(hydrogen sulfate) by the formation of osmium blacks at the sites of copper capture, Histochemistry 41: 207–225.PubMedCrossRefGoogle Scholar
  32. Hànssler, G., Maxwell, D. P., and Maxwell, M. D., 1975, Demonstration of acid phosphatase- containing vacuoles in hyphal tip cells of Sclerotium rolfsii, J. Bacteriol. 124: 997–1006.PubMedGoogle Scholar
  33. Hânssler, G., Muhlenbacker, D., and Reisener, J. J., 1981, Cytochemical localization of micro- bodies in Puccinia graminis var. tritici, Exp. Mycol. 5: 209-216.Google Scholar
  34. Henry, E. W., 1975, Polypheny 1 oxidase activity in thylakoids and membrane-bound granular components of Nicotiana tabacum chloroplasts, J. Microsc. ( Paris ) 22: 109-166.Google Scholar
  35. Hirai, K. I., 1974, Distribution of peroxidase in Tetrahymena pyriformis mitochondria, J. Histochem. Cytochem. 22: 189–202.PubMedCrossRefGoogle Scholar
  36. Holt, S. C., and Beveridge, T. J. (eds.), 1982, Electron Microscopy: Its Development and Application to Microbiology, Can. J. Microbiol. 28:1–718.Google Scholar
  37. Horisberger, M., Vonlanthen, M., 1977, Location of mannan and chitin on thin sections of budding yeasts with gold markers, Arch. Microbiol. 115: 1–7.PubMedCrossRefGoogle Scholar
  38. Huang, A. H. C., Trelease, R. N., Moore, T. S., Jr., 1983, Plant Peroxisomes, Academic Press, New York.Google Scholar
  39. Hugon, J., Borgers, M., 1966, A direct lead method for electron microscope visualization of alkaline phosphatase activity, J. Histochem. Cytochem. 14: 429–431.PubMedCrossRefGoogle Scholar
  40. Karnovsky, M. J., 1965, A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy, J. Cell Biol. 27: 137a.Google Scholar
  41. Kawamoto, S., Tanaka, A., Yamamura, M., Teranishi, Y., Fukui, S., Osumi, M., 1977, Microbody of n-alkane-grown yeast: Enzyme localization in the isolated microbody, Arch. Microbiol. 112: 1–8.PubMedCrossRefGoogle Scholar
  42. Kazama, F., 1973, Ultrastructure of Thraustochytrium sp. zoospores. III. Cytolysomes and acid phosphatase distribution, Arch. Mikrobiol. 89: 95–104.CrossRefGoogle Scholar
  43. Litwin, J. A., Tokota, S., Fahimi, H. D., 1984, Light microscopic immunocytochemical demonstration of peroxisomal enzymes in Epon sections, Histochemistry 81: 15–22.PubMedCrossRefGoogle Scholar
  44. Maxwell, D. P., Hânssler, G., Maxwell, M. D., 1978, Ultrastructural localization of acid phosphatase in Pythium paroecandrum, Protoplasma 94: 73–82.CrossRefGoogle Scholar
  45. Meirelles, M. N. L., DeSouza, W., 1984, Localization of Mg2 + -activated ATPase in the plasma membrane of Trypanosoma cruzi, J. Protozool. 31: 135–140.PubMedGoogle Scholar
  46. Menzel, D., 1979, Accumulation of peroxidase in the cap rays of Acetabularia during the development of gametangia, J. Histochem. Cytochem. 27: 1003–1010.PubMedCrossRefGoogle Scholar
  47. Meyer, R., Parish, R. W., Hohl, H. R., 1976, Hyphal tip growth in Phytophthora: Gradient distribution and ultrahistochemistry of enzymes, Arch. Microbiol. 110: 215–224.PubMedCrossRefGoogle Scholar
  48. Morrison, P. J., 1977, Gametangial development in Allomyces macrogynus. II. Evidence against mitochondrial involvement in sexual differentiation, Arch. Microbiol. 113: 173–179.CrossRefGoogle Scholar
  49. Murry, M. A., Hallenbeck, P. C., Benemann, J. R., 1984, Immunochemical evidence that nitrogenase is restricted to heterocysts in Anabaena cylindrica, Arch. Microbiol. 137: 194–199.CrossRefGoogle Scholar
  50. Noguchi, T., 1976, Phosphatase activities and osmium reduction in cell organelles of Micrasterias americana, Protoplasma 87: 163–178.PubMedCrossRefGoogle Scholar
  51. Nolan, R. A., Bal, A. K., 1974, Cellulase localization in hyphae of Achlya ambisexualis, J. Bacteriol. 117: 840–843.PubMedGoogle Scholar
  52. Novikoff, A. B., Goldfischer, S., 1961, Nucleoside diphosphatase activity in the Golgi apparatus and its usefulness for cytological studies, Proc. Natl. Acad. Sci. USA 47: 802–810.PubMedCrossRefGoogle Scholar
  53. Novikoff, A. B., Goldfischer, S., 1969, Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine, J. Histochem. Cytochem. 17: 675–680.PubMedCrossRefGoogle Scholar
  54. Oakley, B. R., Dodge, J. D., 1974, The ultrastructure and cytochemistry of microbodies in Porphyridium, Protoplasma 80: 233–244.PubMedCrossRefGoogle Scholar
  55. Osumi, M., Imaizumi, F., Imai, M., Sato, H., Yamaguchi, H., 1975, Isolation and characterization of microbodies from Candida tropicalis PK233 cells grown on normal alkanes, J. Gen. Appl. Microbiol. 21: 375–387.CrossRefGoogle Scholar
  56. Pfeifer, V., Poelmann, E., Witschel, H., 1973, Kinetics of the accumulation of lead phosphate in acid phosphatase studies, in: Electron Microscopy and Cytochemistry ( E. Wisse, W. T. Daems, I. Moelnaar, and P. Van Duijn, eds.), pp. 25–28, Elsevier, Amsterdam.Google Scholar
  57. Philippi, M. L., Parish, R. W., and Hohl, H. R., 1975, Histochemical and biochemical evidence for the presence of microbodies in Phytophthora palmivora, Arch. Microbiol. 103: 127–132.PubMedCrossRefGoogle Scholar
  58. Powell, M. J., 1976, Ultrastructure and isolation of glyoxysomes (microbodies) in zoospores of the fungus Entophlyctis, Protoplasma 89: 1–27.CrossRefGoogle Scholar
  59. Powell, M. J., 1977, Ultrastructural cytochemistry of the diaminobenzidine reaction in the aquatic fungus Entophlyctis variabilis, Arch. Microbiol. 114: 123–136.CrossRefGoogle Scholar
  60. Powell, M. J., 1978, Phylogenetic implications of the microbody lipid globule complex in zoosporic fungi, Bio Systems 10: 167–180.PubMedCrossRefGoogle Scholar
  61. Powell, M. J., 1979a, The structure of microbodies and their associations with other organelles in zoosporangia of Entophlyctis variabilis, Protoplasma 98: 177–198.CrossRefGoogle Scholar
  62. Powell, M. J., 1979b, What are the chromidia of Polyphagus euglenaeAm. J. Bot. 66: 1173–1180.CrossRefGoogle Scholar
  63. Powell, M. J., 1981, Ultrastructure of Polyphagus euglenae zoospores, Can. J. Bot. 59: 2049–2061.CrossRefGoogle Scholar
  64. Powell, M. J., Bracker, B. E., Sternshein, D. J., 1981, Formation of chlamydospores in Gilbertella persicaria, Can. J. Bot. 59: 908–928.CrossRefGoogle Scholar
  65. Price, G. D., and Whitecross, M. I., 1983, Cytochemical localization of ATPase activity on the plasmalemma of Chara corallina, Protoplasma 116: 65–74.CrossRefGoogle Scholar
  66. Pueschel, B. M., 1980, Evidence for two classes of microbodies in meiocytes of the red alga Palmaria palmata, Protoplasma 104: 273–282.CrossRefGoogle Scholar
  67. Reiss, J., 1974, Cytochemical detection of hydrolases in fungus cells. III. Aryl sulfatase, J. Histochem. Cytochem. 22: 183–188.PubMedCrossRefGoogle Scholar
  68. Roels, F., 1974, Cytochrome с and cytochrome oxidase in diaminobenzidine staining of mitochondria, J. Histochem. Cytochem. 22: 442–446.PubMedCrossRefGoogle Scholar
  69. Roels, F., Wisse, E., DePrest, B., van der Meulen, J., 1975, Cytochemical discrimination between catalases and peroxidases using diaminobenzidine, Histochemistry 41: 281–312.PubMedCrossRefGoogle Scholar
  70. Rosing, W. C., 1984, Ultracytochemical localization of acid phosphatase within deliquescing asci of Chaetomium brasiliense, Mycologia 76: 67–73.CrossRefGoogle Scholar
  71. Rudzinska, M. A., 1972, Ultrastructural localization of acid phosphatase in feeding Tokophrya infusionum, J. Protozool. 19: 618–629.PubMedGoogle Scholar
  72. Rudzinska, M. A., 1974, Ultrastructural localization of acid phosphatase in starved Tokophrya infusionum, J. Protozool. 21: 721–728.PubMedGoogle Scholar
  73. Sentandreu, R., Martinez-Ramon, A., and Ruiz-Herrera, J., 1984, Localization of chitin synthase in Mucor rouxii by an autoradiographic method, J. Gen. Microbiol. 130: 1193–1199.PubMedGoogle Scholar
  74. Shnitka, T. K., Talibi, G. G., 1971, Cytochemical localization of ferricyanide reduction of a hydroxy acid oxidase activity in peroxisomes of rat kidney, Histochemie 27: 137–158.PubMedCrossRefGoogle Scholar
  75. Silverberg, B. A., 1975, 3,3′-Diaminobenzidine (DAB) ultrastructural cytochemistry of microbodies in Chlorogonium elongatum, Protoplasma 85: 373–376.Google Scholar
  76. Stempen, H., and Evans, R. C., 1982, Behavior of the inner wall layer of the germinating Fuligo septica spore: Evidence of peroxidase activity, Mycologia 74: 26–35.CrossRefGoogle Scholar
  77. Sternberger, L. A., 1973, Enzyme immunocytochemistry, in: Electron Microscopy of Enzymes: Principles and Methods, Vol. 1 ( M. A. Hayat, ed.), pp. 150 - 191, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  78. Stevens, F. J., Pankratz, H. S., and Uffen, R. L., 1977, Demonstration of two 3,3′-diaminobenzidine oxidation reactions associated with photosynthetic membranes in anaerobic light-grown Rho- dospirillum rubrum, J. Histochem. Cytochem. 25: 1264-1268.Google Scholar
  79. Thomas, J., and Trelease, R. N., 1981, Cytochemical localization of glycolate oxidase in micro- bodies (glyoxysomes and peroxisomes) of higher plant tissues with the CeCl3 technique, Protoplasma 108: 39–53.CrossRefGoogle Scholar
  80. Todd, M. M., Vigil, E. L., 1972, Cytochemical localization of peroxidase activity in Sac- charomyces cerevisiae, J. Histochem. Cytochem. 20: 344–349.PubMedCrossRefGoogle Scholar
  81. Ton-That, T. C., Michea-Hamzehpour, M., and Turian, G., 1983, Ultrastructural demonstration of loss and recovery of cytochrome oxidase activity during and after heat induction of microcycle conidiation in Neurospora crassa, Protoplasma 116: 149–154.CrossRefGoogle Scholar
  82. Trelease, R. N., 1975, Malate synthase, in: Electron Microscopy of Enzymes: Principles and Methods, Vol. 4 ( M. A. Hayat, ed.), pp. 157 - 176, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  83. Trelease, R. N., Becker, W. M., Burke, J. J., 1974, Cytochemical localization of malate synthase in glyoxysomes, J. Cell Biol. 60: 483–495.PubMedCrossRefGoogle Scholar
  84. Van Dijken, J. P., Veenhuis, M., Vermeulen, C. A., Harder, W., 1975, Cytochemical localization of catalase activity in methanol-grown Hansenula polymorpha, Arch. Microbiol. 105: 261–267.PubMedCrossRefGoogle Scholar
  85. Van Duijn, P., 1974, Fundamental aspects of enzyme cytochemistry, in: Electron Microscopy and Cytochemistry ( E. Wisse, W. T. Daems, I. Moelnaar, and P. Van Duijn, eds.), pp. 3–23, Elsevier, Amsterdam.Google Scholar
  86. Van Steveninck, R. F. M., 1979, The verification of cytochemical tests for ATP-ase activity in plant cells using X-ray microanalysis, Protoplasma 99: 211–220.CrossRefGoogle Scholar
  87. Veenhuis, M., Van Dijken, J. P., Harder, W., 1976, Cytochemical studies on the localization of methanol oxidase and other oxidases in: peroxisomes of methanol-grown Hansenula polymorpha, Arch. Microbiol. 111:123–135.Google Scholar
  88. Veenhuis, M., Keizer, I., and Harder, W., 1979, Characterization of peroxisomes in glucose-grown Hansenula polymorpha and their development after the transfer of cells into methanol-containing media, Arch. Microbiol. 120: 167-175.Google Scholar
  89. Veser, J., Martin, R., Thomas, H., 1981, Immunocytochemical demonstration of catechol methyltransferase in Candida tropicalis, J. Gen. Microbiol. 126: 97–101.PubMedGoogle Scholar
  90. Vorisek, J., 1977, Electron-cytochemical demonstration of acid phosphatase in saprophytic Claviceps purpurea, Arch. Microbiol. 111: 289–295.PubMedCrossRefGoogle Scholar
  91. Wachstein, M., and Meisel, E., 1957, Histochemistry of hepatic phosphatases at physiological pH with special reference to the demonstration of bile canaliculi, Am. J. Clin. Pathol. 27: 13–23.PubMedGoogle Scholar
  92. Washitani, I., and Sato, S., 1976, On the reliability of the lead salt precipitation method of phosphatase localization in plant cells, Protoplasma 89: 157–170.CrossRefGoogle Scholar
  93. Wick, S. M., Hepler, P. K., 1980, Localization of Ca2 + -containing antimonate precipitates during mitosis, J. Cell Biol. 86: 500–513.PubMedCrossRefGoogle Scholar
  94. Wientjes, F. B., Riet, J. V., Nanninga, N., 1980, Immunoferritin labeling of respiratory nitrate reductase in membrane vesicles of Bacillus licheniformis and Klebsiella aerogenea, Arch. Microbiol. 127: 39–46.PubMedCrossRefGoogle Scholar
  95. Williams, P. G., and Stewart, P. R., 1976, The intramitochondrial location of cytochrome с peroxidase in the wild-type and petite Saccharomyces cerevisiae, Arch. Microbiol. 107: 63–70.PubMedCrossRefGoogle Scholar
  96. Yokota, S., Deiman, W., Hashimoto, T., Fahimi, H. D., 1983, Immunocytochemical localization of two peroxisomal enzymes of lipid a-oxidation in specific granules of rat eosinophils, Histochemistry 78: 425–433.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Martha J. Powell
    • 1
  1. 1.Department of BotanyMiami UniversityOxfordUSA

Personalised recommendations