Localization of Carbohydrate-Containing Molecules

  • Gregory W. Erdos


A variety of carbohydrate-containing molecules can be found at both extracellular and intracellular locations in microorganisms. These can be subdivided into several broad categories based on their general composition and would include the polysaccharides (both homo- and heteropolymers), glycoproteins, glycolipids, and proteoglycans. These macromolecules, especially those exposed at the cell surface, have taken on considerable importance in the study of self-nonself recognition, cell attachment, adhesion, and pathogenesis, and receptor-mediated uptake. Thus, in situ localization of these molecules has become an important adjunct to biochemical studies of their structure. Although histochemical methods provide precise localization of carbohydrates, they have, until recently, given us only very basic information about the specific structure of the molecule in question. Most investigations have been limited to the detection of anionic groups exposed at the cell surface or to the presence of hexose sugars. Both of these techniques are based on light microscopic histochemistry. With the discovery of more and more lectins, some of which have very specific binding characteristics, more precise information can be gained about the saccharide structure of a molecule in question. Increasingly sophisticated technology in the use of lectins can provide information about sugars at the cell surface as well as in the cell interior. in the cell interior. Most recent is the application of carbohydrate-specific polyclonal and monoclonal antibodies coupled to electron-dense markers for the ultrastructural localization of specific polysaccharides and glycoconjugates.


Colloidal Gold Alcian Blue Wheat Germ Agglutinin Complex Carbohydrate Ultrastructural Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth, S. K., Karnovsky, M. J., 1972, An ultrastructural staining method for enhancing the size and electron opacity of ferritin in thin sections, J. Histochem. Cytochem. 20: 225–229.PubMedCrossRefGoogle Scholar
  2. Avrameas, S., 1969, Coupling of enzymes to proteins with glutaraldehyde: Use of conjugates for the detection of antigens and antibodies, Immunochemistry 6: 43–52.PubMedCrossRefGoogle Scholar
  3. Avrameas, S., 1970, Emploi de la concanavaline-A pour l’isolement, la detection et le resume des glycoproteines at glucides extra ou endocellulaire, C.R. Acad. Sci. 270: 2205–2208.Google Scholar
  4. Bauer, H., Horisberger, M., Bush, D. D., and Sigarlakie, E., 1972, Mannan as the major component of the bud scars of Saccharomyces cerevisiae, Arch. Microbiol. 85: 202–208.Google Scholar
  5. Bayer, E. A., Wilchek, M., Skutelsky, E., 1976, Affinity cytochemistry: The localization of lectin and antibody receptors on erythrocytes via the avidin-biotin complex, FEBS Lett. 68: 240–244.PubMedCrossRefGoogle Scholar
  6. Bayer, M. E., Thurow, H., 1977, Polysaccharide capsule of Escherichia coli: Microscope study of its size, structure and its sites of synthesis, J. Bacteriol. 130: 911–936.PubMedGoogle Scholar
  7. Behnke, O., Zelander, T., 1970, Preservation of intercellular substances by the cationic dye Alcian blue in preparative procedures for electron microscopy, J. Ultrastruct. Res. 31: 424–438.PubMedCrossRefGoogle Scholar
  8. Bendayan, M., 1981, Ultrastructural localization of nucleic acids by the use of enzyme-gold complexes, J. Histochem. Cytochem. 29: 531–541.PubMedCrossRefGoogle Scholar
  9. Bendayan, M., 1984, Enzyme-gold electron microscopic cytochemistry: A new affinity approach for the ultrastructural localization of macromolecules, J. Electron Microsc. Tech. 1: 349–372.CrossRefGoogle Scholar
  10. Bennett, H. S., 1963, Morphological aspects of extracellular polysaccharides, J. Histochem. Cytochem. 11: 14–23.CrossRefGoogle Scholar
  11. Bernhard, W., Avrameas, S., 1971, Ultrastructural visualization of cellular carbohydrate components by means of concanavalin A, Exp. Cell Res. 64: 232–236.CrossRefGoogle Scholar
  12. Birdsell, D. C., Doyle, R. J., Morgenstern, M., 1975, Organization of teichoic acid in the cell wall of Bacillus subtilis, J. Bacteriol. 121: 726–734.PubMedGoogle Scholar
  13. Briggman, J. V., Widnell, B. C., 1983, A comparison of direct and indirect techniques using ferritin-conjugated ligands for the localization of concanavalin A binding sites on isolated hepatocyte plasma membranes, J. Histochem. Cytochem. 31: 579–590.PubMedCrossRefGoogle Scholar
  14. Chamberland, H., Charest, P. M., Ouellette, G. B., Pauze, F. J., 1985, Chitinase gold complex to localize chitin ultrastructurally in tomato root cells infected by Fusarium oxysporum f. sp. radicis-lycopersici compared with chitin-specific gold-conjugated lectin, Histochem. J. 17: 313-322.Google Scholar
  15. Courtoy, R., Simar, L. J., 1974, Importance of controls for the demonstration of carbohydrates in electron microscopy with the silver methenamine or the thiocarbohydrazide-silver proteinate methods, J. Microsc. (Oxford) 100: 199–211.CrossRefGoogle Scholar
  16. Courtoy, R., Boniver, J., Simar, L. J., 1974, A cetylpyridinium chloride (CPC) and ferric thiocyanate (FeTh) method for polyanion demonstration on thin sections for electron microscopy, Histochemistry 42: 133–139.PubMedCrossRefGoogle Scholar
  17. Craig, A. S., 1974, Sodium borohydride as an aldehyde blocking reagent for electron microscope histochemistry, Histochemistry 42: 141–144.PubMedCrossRefGoogle Scholar
  18. Danon, D., Goldstein, L., Marikovsy, Y., Skutelsky, E., 1972, Use of cationized ferritin as a label of negative charges on cell surfaces, J. Ultrastruct. Res. 38: 500–510.PubMedCrossRefGoogle Scholar
  19. Dykstra, M. J., Aldrich, H. C., 1978, Successful demonstration of an elusive cell coat in amebae, J. Protozool. 25: 38–41.PubMedGoogle Scholar
  20. François, D., Mongiat, F., 1977, An ultrastructural study of wheat germ agglutinin binding sites using glucose oxidase as a marker, J. Ultrastruct. Res. 59: 119–125.PubMedCrossRefGoogle Scholar
  21. Garland, J. M., 1973, Preparation and performance of gold-labelled concanavalin A for the location of specifically reactive sites in walls of S. faecalis 8191, in: Electron Microscopy and Cytochemistry ( E. Wisse, W. T. Daems, I. Molenaar, and P. van Duijn, eds.), pp. 303 - 307, North-Holland, Amsterdam.Google Scholar
  22. Geoghegan, W. D., Ackerman, G. A., 1977, Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscope level: A new method, theory and application, J. Histochem. Cytochem. 25: 1187–1200.PubMedCrossRefGoogle Scholar
  23. Geyer, G., 1971, New histochemical techniques for the demonstration of carboxyl groups in mucosubstances, Histochem. J. 3: 241–250.PubMedCrossRefGoogle Scholar
  24. Geyer, G., Helmke, U., and Christner, A., 1971, Ultrahistochemical demonstration of Alcian blue stained mucosubstances by the sulfide-silver reaction, Acta Histochem. 46: 244–249.Google Scholar
  25. Ghinea, N., Simionescu, N., 1985, Anionized and cationized hemeundecapeptides as probes for cell surface charge and permeability studies: Differentiated labeling of endothelial plasmalemmal vesicles, J. Cell Biol. 100: 606–612.PubMedCrossRefGoogle Scholar
  26. Gomori, G., 1946, A new histochemical test for glycogen and mucin, Am. J. Clin. Pathol. Tech. Sect. 10: 177–179.Google Scholar
  27. Gomori, G., 1952, Microscopic Histochemistry: Principles and Practice, p. 57, University of Chicago Press, Chicago.Google Scholar
  28. Grote, M., Fromme, H. G., 1984, Electron microscopic localization of concanavalin A receptor sites in pollen surface material after fixation with glutaraldehyde-cetylpyridinium chloride, J. Histochem. Cytochem. 32: 869–871.PubMedCrossRefGoogle Scholar
  29. Gustafson, G. T., Pihl, E., 1967, Staining of mast cell acid glycosaminoglycans in ultrathin section with ruthenium red, Nature (London) 216: 697–698.CrossRefGoogle Scholar
  30. Hanker, J. S., Seaman, A. R., Weiss, L. P., Ueno, H., Bergmann, R. A., Seligman, A. M., 1964, Osmiophilic reagents: New cytochemical principals for light and electron microscopy, Science 146: 1039–1043.PubMedCrossRefGoogle Scholar
  31. Hardin, J. H., Spicer, S. S., 1971, Ultrastructural localization of dialyzed iron-reactive mucosubstance in rabbit heterophils, basophils and eosinophils, J. Cell Biol. 48: 368–386.PubMedCrossRefGoogle Scholar
  32. Harris, J. L., Szaniszlo, P. J., 1983, Electron microscopic demonstration of chitin in cell walls of Wangiella dermatiditis by chitinase-colloidal gold, Abstr. Annu. Meet. Am. Soc. Microbiol. 1983: 144.Google Scholar
  33. Hayat, M. A. (ed.), 1981, Principles and Techniques of Electron Microscopy: Biological Applica¬tions, Vol. 1, 2nd ed., University Park Press, Baltimore.Google Scholar
  34. Hernandez, W., Rambourg, A., Leblond, C. P., 1968, Periodic acid-chromic acid- methenamine silver technique for glycoprotein detection in the electron microscope, J. Histochem. Cytochem. 16: 507.Google Scholar
  35. Horisberger, M., 1979, Evaluation of colloidal gold as a cytochemical marker for transmission and scanning electron microscopy, Biol. Cell. 36: 253–258.Google Scholar
  36. Horisberger, M., 1984a, Electron-opaque markers: A review, in: Immunolabeling for Electron Microscopy (J. M. Polak and 1. M. Varndell, eds.), pp. 17–26, Elsevier, Amsterdam.Google Scholar
  37. Horisberger, M., 1984b, Lectin cytochemistry, in: Immunolabeling for Electron Microscopy ( J. M. Polak and I. M. Varndell, eds.), pp. 249–258, Elsevier, Amsterdam.Google Scholar
  38. Horisberger, M., Rosset, J., 1977, Colloidal gold, a useful marker for transmission and scanning electron microscopy, J. Histochem. Cytochem. 25: 295–305.PubMedCrossRefGoogle Scholar
  39. Horisberger, M., Tacchini-Vonlanthen, M., 1983, Stability and steric hindrance of lectinlabelled gold markers in transmission and scanning electron microscopy, in: Lectins, Vol. 3 (T. C. Bog-Hansen and G. A. Spengler,), pp. 189–197, de Gruyter, Berlin.Google Scholar
  40. Horisberger, M., Vonlanthen, M., 1979, Multiple marking of cell surface receptors by gold granules: Simultaneous localization of three lectin receptors on human erythrocytes, J. Microsc. (Oxford) 115: 97–102.CrossRefGoogle Scholar
  41. Horisberger, M., Bauer, H., Bush, D. A., 1971, Mercury labelled concanavalin A as a marker in electron microscopy—Localization of mannan in yeast cell walls, FEBS Lett. 18: 311–314.PubMedCrossRefGoogle Scholar
  42. Horisberger, M., Vonlanthen, M., and Rosset, J., 1978, Localization of galactomannan and wheat germ agglutinin receptors in Schizosaccharomyces pombe, Arch. Microbiol. 119: 107–111.PubMedCrossRefGoogle Scholar
  43. Jones, R., Reid, L., 1973, The effect of pH on Alcian blue staining of epithelial acid glycoproteins. I. Sialomucins and sulfomucins (singly or in simple combinations), Histochem. J. 5: 9–18.PubMedCrossRefGoogle Scholar
  44. Kataoka, M., Tavassoli, M., 1984, Synthetic neoglycoproteins: A class of reagents for the detection of sugar recognizing substances, J. Histochem. Cytochem. 32: 1091–1098.PubMedCrossRefGoogle Scholar
  45. Kieda, C., Delmotte, F., and Monsigny, M., 1977, Preparation and properties of glycosylated cytochemical markers, FEBS Lett. 76: 257–261.PubMedCrossRefGoogle Scholar
  46. Lewis, P. R., Knight, D. P., 1977, Staining methods for sectioned material, in: Practical Methods for Electron Microscopy ( A. M. Glauert, ed.), pp. 77–136, Elsevier/North-Holland, Amsterdam.Google Scholar
  47. Linssen, W. H., Huis in’t Veld, J. H. J., Poort, C., Slot, J. W., Geuze, J. J., 1973, Immunoelectron microscope study of two types of streptococcal carbohydrate antigens: A comparison of two different incubation techniques, in: Electron Microscopy and Cytochemistry ( E. Wisse, W. T. Daems, I. Molenaar, and P. van Duijn, eds.), pp. 193–196, North-Holland, Amsterdam.Google Scholar
  48. Luft, J. H., 1964, Electron microscopy of cell extraneous coats as revealed by ruthenium red staining, J. Cell Biol. 23: 54a.Google Scholar
  49. Luft, J. H., 1971a, Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action, Anat. Rec. 171: 347–368.PubMedCrossRefGoogle Scholar
  50. Luft, J. H., 1971b, Ruthenium red and violet. II. Fine structural localization in animal tissues, Anat. Rec. 171: 369-416.Google Scholar
  51. Martin, B. J., Spicer, S. S., 1974, Concanavalin A-iron dextran technique for staining cell surface mucosubstances, J. Histochem. Cytochem. 22: 206–209.PubMedCrossRefGoogle Scholar
  52. Molday, R., Moher, P., 1980. A review of cell surface markers and labelling techniques for scanning electron microscopy, Histochem. J. 12: 273–315.PubMedCrossRefGoogle Scholar
  53. Monneron, A., Bernhard, W., 1966, Action de certaines enzymes sur des tissus inclus en Epon, J. Microsc. (Paris) 5: 697–714.Google Scholar
  54. Nachmias, V. T., Marshall, J. M., Jr., 1961, Protein uptake by pinocytosis in amoebae: Studies on ferritin and methylated ferritin, in: Biological Structure and Function, Vol. 2 ( T. Goodwin and O. Lindberg, eds.), pp. 605–619, Academic Press, New York.Google Scholar
  55. Nicolson, G. L., Singer, S. J., 1971, Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy, Proc. Natl. Acad. Sci. USA 68: 942–945.PubMedCrossRefGoogle Scholar
  56. Pate, J. L., Ordal, E. J., 1967, The fine structure of Chondrococcus columnaris. III. The surface layers of Chondrococcus columnaris, J. Cell Biol. 35: 37–50.PubMedCrossRefGoogle Scholar
  57. Pearse, A. G. E., 1968, Histochemistry, Theoretical and Applied, Vol. 1, 3rd ed., Churchill, London.Google Scholar
  58. Pease, D. C., 1970, Phosphotungstic acid as a specific electron stain for complex carbohydrates, J. Histochem. Cytochem. 18: 455–458.PubMedCrossRefGoogle Scholar
  59. Pickett-Heaps, J. D., 1967, Preliminary attempts at ultrastructural polysaccharide localization in root tip cells, J. Histochem. Cytochem. 15: 442–455.PubMedCrossRefGoogle Scholar
  60. Pistole, T. G., 1981, Interaction of bacteria and fungi with lectins and lectin-like substances, Annu. Rev. Microbiol. 35: 85–112.PubMedCrossRefGoogle Scholar
  61. Progulske, A., Holt, S. C., 1980, Transmission-scanning electron microscopic observations of selected Eikenella corodens strains, J. Bacteriol. 143: 1003–1018.PubMedGoogle Scholar
  62. Rambourg, A., 1971, Morphological and histochemical aspects of glycoproteins at the surface of animal cells, Int. Rev. Cytol. 31: 57–114.PubMedCrossRefGoogle Scholar
  63. Rambourg, A., Leblond, C. P., 1967, Electron microscopic observations on the carbohydrate- rich cell coat present at the surface of cells in the rat, J. Cell Biol. 32: 27–53.PubMedCrossRefGoogle Scholar
  64. Rambourg, A., Hernandez, W., Leblond, C. P., 1969, Detection of complex carbohydrates in the Golgi apparatus of rat cells, J. Cell Biol. 40: 395–414.PubMedCrossRefGoogle Scholar
  65. Renau-Piqueras, J., Knecht, E., Hernandez-Yago, J., 1981, Effects of different fixative solutions on labeling of concanavalin-A receptor sites in human T-lymphocytes, Histochemistry 71: 559–565.PubMedCrossRefGoogle Scholar
  66. Revel, J.-P., 1964, A stain for ultrastructural localization of acid mucopolysaccharides, J. Microsc. (Paris) 3: 535–544.Google Scholar
  67. Rinehart, J. F., Abul-Haj, S. K., 1951, An improved method for histochemical demonstration of acid mucopolysaccharides in tissues, Arch. Pathol. 52: 189–194.Google Scholar
  68. Roberts, R. L., Bowers, B., Slater, M. L., Cabib, E., 1983, Chitin synthesis and localization in cell division cycle mutants of Saccaromyces cerevisiae, Mol. Cell. Biol. 3: 922–930.PubMedGoogle Scholar
  69. Roth, J., 1978, The lectins: Molecular probes in cell biology and membrane research, Exp. Pathol. Suppl. 3: 5–186.Google Scholar
  70. Roth, J., 1983, Application of lectin-gold complexes for electron microscopic localization of glycoconjugates on thin sections, J. Histochem. Cytochem. 31: 987–999.PubMedCrossRefGoogle Scholar
  71. Roth, J., Binder, M., 1978, Colloidal gold, ferritin and peroxidase as markers for electron microscopic double labelling lectin techniques, J. Histochem. Cytochem. 26: 163–169.PubMedCrossRefGoogle Scholar
  72. Roth, J., Franz, H., 1975, Ultrastructural detection of lectin receptors by cytochemical affinity reaction using mannan-iron complex, Histochemistry 41: 365–368.PubMedCrossRefGoogle Scholar
  73. Sannes, P. L., Katsuyama, T., Spicer, S. S., 1978, Tannic acid-metal salts sequences for light and electron microscopic localization of complex carbohydrates, J. Histochem. Cytochem. 26: 55–61.PubMedCrossRefGoogle Scholar
  74. Schrevel, J., Kieda, C., Caigneaux, E., Gros, D., Delmotte, F., and Monsigny, M., 1979, Visualization of cell surface carbohydrates by a general two-step lectin technique: Lectins and glycosylated cytochemical markers, Biol. Cell. 36: 259–266.Google Scholar
  75. Scott, J. E., 1972, Histochemistry of Alcian blue. III. The molecular biological basis of staining by Alcian blue 8GX and analogous phthalocyanins, Histochemie 32: 191–212.PubMedCrossRefGoogle Scholar
  76. Scott, J. E., 1980, The molecular biology of histochemical staining by cationic phthalocyanin dyes: The design of replacements of Alcian blue, J. Microsc. (Oxford) 119: 373–381.CrossRefGoogle Scholar
  77. Seligman, A. M., Hanker, J. S., Wasserkrug, H., DiMochowski, H., Katzoff, L., 1965, Histochemical demonstration of some oxidized macromolecules with thiocarbohydrazide (TCH) or thiosemicarbazide (TSC) and osmium tetroxide, J. Histochem. Cytochem. 13: 629–639.PubMedCrossRefGoogle Scholar
  78. Seno, S., Tsujii, T., Ono, T., Ukita, S., 1983, Cationic cacodylate iron colloid for the detection of anionic sites on the cell surface and the histochemical stain of acid mucopolysaccharides, Histochemistry 78: 27–31.PubMedCrossRefGoogle Scholar
  79. Shea, S. M., 1971, Lanthanum staining of the surface coat of cells. Its enhancement by the use of fixatives containing Alcian blue or cetylpyridinium chloride, J. Cell Biol. 51: 611–620.PubMedCrossRefGoogle Scholar
  80. Simson, J. A. V., 1977, The influence of fixation on the carbohydrate cytochemistry of rat salivary gland secretory granules, Histochem. J. 9: 645–657.CrossRefGoogle Scholar
  81. Smith, S. B., Revel, J.-P., 1972, Mapping of concanavalin A binding sites on the surface of several cell types, Dev. Biol. 27: 434–441.PubMedCrossRefGoogle Scholar
  82. Spicer, S., Schulte, B., 1982, Ultrastructural methods for localizing complex carbohydrates, Hum. Pathol. 13: 343–354.PubMedCrossRefGoogle Scholar
  83. Spicer, S. S., Hardin, J. H., Setser, M. E., 1978, Ultrastructural visualization of sulfated complex carbohydrates in blood and epithelial cell with the high iron diamine procedure, Histochem. J. 10: 435–452.PubMedCrossRefGoogle Scholar
  84. Spurr, A. R., 1969, A low viscosity resin embedding medium for electron microscopy, J. Ultrastruct. Res. 26: 31–43.PubMedCrossRefGoogle Scholar
  85. Thiéry, J. P., 1967, Mise en evidence des polysaccharides sur coup fine en microscopie electronique, J. Microsc. (Paris) 6: 987–1018.Google Scholar
  86. Thiéry, J. P., Ovtracht, L., 1979, Differential characterization of carboxyl and sulfate groups in thin sections for electron microscopy, Biol. Cell. 36: 281–288.Google Scholar
  87. Thomopoulos, G. N., Schulte, B. A., Spicer, S. S., 1983a, The influence of embedding medium and fixation on the post-embedment ultrastructural demonstration of complex carbohydrates. II. Dialyzed iron staining, Histochemistry 79: 417–431.PubMedCrossRefGoogle Scholar
  88. Thomopoulos, G. N., Schulte, B. A., Spicer, S. S., 1983b, The influence of embedding media and fixation on the post-embedment ultrastructural demonstration of complex carbohydrates. I. Morphology and periodic acid-thiocarbohydrazide-silver proteinate staining of vicinal diols, Histochem. J., 15: 763–784.PubMedCrossRefGoogle Scholar
  89. Vian, B., Brillouet, J.-M., and Satiat-Jeunemaitre, B., 1983, Ultrastructural visualization of xylans in cell walls of hardwood by means of xylanase-gold complex, Biol. Cell. 49: 179–182.Google Scholar
  90. Vidic, B., 1973, Structure and cytochemistry of the acinar cell in the rat maxillary gland, Am. J. Anat. 137: 103–117.PubMedCrossRefGoogle Scholar
  91. West, B. M., Erdos, G. W., 1986, Glycoconjugates from several serologically-defined families are secreted and accumulate in the matrix of Dictyostelium discoideum, Differentiation (submitted).Google Scholar
  92. Wetzel, M. G., Wetzel, B. K., Spicer, S. S., 1966, Ultrastructural localization of acid mucosubstances in the mouse colon with iron containing stains, J. Cell Biol. 30: 299–315.PubMedCrossRefGoogle Scholar
  93. Whitfield, C., Vimr, E. R., Costerton, J. W., Troy, F. A., 1984, Protein synthesis is required for in vivo activation of polysialic acid capsule synthesis in Escherichia coli Kl, J. Bacteriol. 159: 321–328.PubMedGoogle Scholar
  94. Woo, D. D. L., Holt, S. C., and Leadbetter, E. R., 1979, Ultrastructure of Bacteroides species: Bacteroides asaccharlyticus, Bacteroides fragilis, Bacteroides melaninogenicus subspecies melaninogenicus, and B. melaninogenicus subspecies intermedins, J. Infect. Dis. 139: 534–546.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Gregory W. Erdos
    • 1
  1. 1.Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleUSA

Personalised recommendations