High-Voltage Electron Microscopy

  • Sandra A. Nierzwicki-Bauer


High-voltage electron microscopy (HVEMY) is transmission or scanning-transmission electron microscopy that is performed at accelerating potentials much higher than those used by conventional transmission (CTEM) or scanning-transmission (CSTEM) instruments. HVEMY requires a specialized instrument, commonly referred to as a high-voltage electron microscope (HVEM), that can operate at accelerating potentials of 1 MV or higher. These HVEMs differ considerably from CTEMs in their physical characteristics, primarily as a result of the difficulties associated with production of such high voltages. HVEMs should not be confused with intermediate-voltage electron microscopes (IVEMs), which operate at 200–400 kV and are physically similar to CTEMs and CSTEMs. The discussion that follows is restricted to the HVEM because, as yet, there are insufficient data to evaluate the usefulness of IVEMs for the examination of microorganisms.


Thin Section Thick Section Stereo Pair Chromatic Aberration Thick Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. G. W., Brenner, R. M., 1971, Accurate placement of ultrathin sections on grids: Control by solgel phases of a gelatin flotation fluid, Stain Technol. 46: 1–6.PubMedGoogle Scholar
  2. Beeston, B. E. P., 1973, High voltage microscopy of biological specimens: Some practical considerations, J. Microsc. (Oxford) 98: 402–416.CrossRefGoogle Scholar
  3. Byers, H. R., Porter, K. R., 1977, Transformation in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion. I. A study using whole cell preparations in stereo high voltage electron microscopy, J. Cell Biol. 75: 541–558.PubMedCrossRefGoogle Scholar
  4. Carasso, N., Ovtracht, L., Favard, P., 1971, Observation, en microscopie électronique haute tension, de l’appareil de Golgi sur coupes de 0.5 à 5 fx d’épaisseur, С. R. Acad. Sci. Ser. D 273: 876–879.Google Scholar
  5. Сох, G., Juniper, B. E., 1983, High-voltage electron microscopy of whole, critical-point dried plant cells—Fine cytoskeletal elements in the moss Bryum tenuisetum, Protoplasma 115: 70–80.CrossRefGoogle Scholar
  6. Crang, R. E., Pechak, D. G., 1978, Serial section reconstruction of the black yeast, Au- reobasidium pullulans by means of high voltage electron microscopy, Protoplasma 96: 225–234.CrossRefGoogle Scholar
  7. De Souza, W., Benchimol, M., 1984, High voltage electron microscopy of critical point dried trypanosomatids, J. Submicrosc. Cytol. 16: 237–242.PubMedGoogle Scholar
  8. Drummond, D. G. (ed.), 1950, The practice of electron microscopy, J. R. Microsc. Soc. 70:1–141.Google Scholar
  9. Dubochet, J., 1973, High resolution dark-field electron microscopy, in: Principles and Techniques of Electron Microscopy, Vol. 3 ( M. A. Hayat, ed.), pp. 115–151, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  10. Dupouy, G., 1968, Electron microscopy at very high voltages, Adv. Opt. Electron Microsc. 2: 167–250.Google Scholar
  11. Dupouy, G., 1973, Performance and applications of the Toulouse 3 million volt electron microscope, J. Microsc. (Oxford) 97:–-28.Google Scholar
  12. Dupouy, G., Perrier, F., Durrieu, L., 1960, Microscopie électronique: L’observation de la matière vivante au moyen d’un microscope électronique fonctionnant sous très haute tension, C. R. Acad. Sci. 251: 2836–2841.Google Scholar
  13. Dupouy, G., Perrier, F., Enjalbert, L., Lapchine, L., Verdier, P., 1969, Accroisement du contraste des images d’objects amorphes en microscopie électronique, C. R. Acad. Sci. Ser. B 268: 1341–1345.Google Scholar
  14. Favard, P., Carasso, N., 1973, The preparation and observation of thick biological sections in the high voltage electron microscope, J. Microsc. (Oxford) 97: 59–81.CrossRefGoogle Scholar
  15. Favard, P., Ovtracht, L., and Carasso, N., 1971, Observations de spécimens biologiques en microscopie électronique à haute tension. 1. Coupes épaisses, J. Microsc. (Paris) 12: 301–316.Google Scholar
  16. Fonte, V. G., Porter, K. R., 1974, Visualization in whole cells of herpes simplex virus using SEM and ТЕМ, in: Scanning Electron Microscopy 1974 ( O. Johari and I. Corvin, eds.), pp. 827 - 834, Illinois Institute of Technology Research Institute, Chicago.Google Scholar
  17. Gershenbaum, M. R., Shay, J. W., Porter, K. R., 1974, The effects of cytochalasin B in Balb/373 mammalian cells cultured in vitro as observed by scanning and high voltage electron microscopy, in: Scanning Electron Microscopy 1974 (O. Johari and I. Corvin), pp. 589- 596, Illinois Institute of Technology Research Institute, Chicago.Google Scholar
  18. Glauert, A. M., 1974, The high voltage electron microscope in biology, J. Cell Biol. 63: 717–748.PubMedCrossRefGoogle Scholar
  19. Glauert, A. M., Mayo, C. R., 1973, The study of the three-dimensional structural relationships in connective tissues by high voltage electron microscopy, J. Microsc. (Oxford) 97: 83–94.CrossRefGoogle Scholar
  20. Guatelli, J. C., Porter, K. R., Anderson, K. L., Boggs, D. P., 1982, Ultrastructure of the cytoplasmic and nuclear matrix of human lymphocytes observed using high voltage electron microscopy and embedment-free sections, Biol. Cell 43: 69–80.Google Scholar
  21. Harris, N., 1979, Endoplasmic reticulum in developing seeds of Vicia faba: A high voltage electron microscope study, Planta 146: 63–69.CrossRefGoogle Scholar
  22. Harris, N., and Chrispeels, J. J., 1980, The endoplasmic reticulum of mung-bean cotyledons: Quantitative morphology of cisternal and tubular ER during seedling growth, Planta 148: 293–303.CrossRefGoogle Scholar
  23. Hawes, C. R., 1981, Applications of high voltage electron microscopy to botanical ultrastructure, Micron 12: 227–257.Google Scholar
  24. Hawes, C. R., Juniper, B. E., Home, J. C., 1983, Electron microscopy of resin-free sections of plant cells, Protoplasma 115: 88–93.CrossRefGoogle Scholar
  25. Hayat, M. A., 1970, Principles and Techniques of Electron Microscopy, Vol. 1, p. 266, Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  26. Hudson, B., Makin, M. J., 1970, The optimum tilt angle for electron stereomicroscopy, J. Phys. E. 3: 311.CrossRefGoogle Scholar
  27. Ichimura, T., Hashimoto, P. H., 1982, Three-dimensional fine structure of elastic fibers in the perivascular space of some circumventricular organs as revealed by high-voltage electron microscopy, J. Ultrastruct. Res. 81: 172–183.PubMedCrossRefGoogle Scholar
  28. Kilarski, W., Iwasaki, Y., Porter, K. R., and Koprowski, H., 1976, High voltage electron microscopy of human brain cells infected with vaccinia and parainfluenza 1 viruses, J. Microsc. Biol. Cell. 25: 81–86.Google Scholar
  29. King, M. V., Parsons, D. F., Turner, J. N., Chang, B. B., Ratkowski, A. J., 1980, Progress in applying the high-voltage electron microscope to biomedical research, Cell Biophys. 2: 1–95.Google Scholar
  30. Locke, M., Krishnan, N., 1971, Hot alcoholic phosphotungstic acid and uranyl acetate as routine stains for thick and thin sections, J. Cell Biol. 50: 550–557.PubMedCrossRefGoogle Scholar
  31. Locke, M., Krishnan, N., McMahon, J. T., 1971, A routine method for obtaining high contrast without staining sections, J. Cell Biol. 50: 540–544.PubMedCrossRefGoogle Scholar
  32. Loftus, J. C., Choate, J., and Albrecht, R. M., 1984, Platelet activation and cytoskeletal reorganization: High voltage electron microscopic examination of intact and Triton-extracted whole mounts, J. Cell Biol. 98: 2019–2025.PubMedCrossRefGoogle Scholar
  33. Mannella, C. A., and Ratkowski, A. J., 1983, Adaptation of a HVEM for routine biological dark- field imaging, Ultramicroscopy 11: 21–34.PubMedCrossRefGoogle Scholar
  34. Massover, W. H., 1972, Ultra-high voltage electron microscopy (1-3 MeV) of biological mac- romolecules, in: Proceedings of the 30th Annual Meeting of the Electron Microscopy Society of America, pp. 182–183.Google Scholar
  35. Massover, W. H., 1974, Effective resolution in biological thin sections: Experimental results with ultra-high voltage electron microscopy (1–3 MeV), in: Proceedings of the 3rd International Congress on High Voltage Electron Microscopy, Oxford, pp. 163-166.Google Scholar
  36. Massover, W. H., Lacaze, J.-C., and Durrieu, L., 1973, The ultrastructure of ferritin mac- romolecules. I. Ultrahigh voltage electron microscopy (1-3 MeV), J. Ultrastruct. Res. 43: 460–475.PubMedCrossRefGoogle Scholar
  37. Mazurkiewicz, J. E., Nakane, P. K., 1972, Light and electron microscopic localization of antigens in tissues embedded in polyethylene glycol with a peroxidase-labelled antibody method, J. Histochem. Cytochem. 20: 969–974.PubMedCrossRefGoogle Scholar
  38. Meek, G. A., 1976, Practical Electron Microscopy for Biologists, 2nd ed., pp. 365–375, Wiley, New York.Google Scholar
  39. Nierzwicki-Bauer, S. A., Balkwill, D. L., Stevens, S. E., Jr., 1983, Three-dimensional ultra- structure of a unicellular cyanobacterium, J. Cell Biol. 97: 713–722.PubMedCrossRefGoogle Scholar
  40. Nierzwicki-Bauer, S. A., Balkwill, D. L., Stevens, S. E., Jr., 1984, The use of high-voltage electron microscopy and semi-thick sections for examination of cyanobacterial thylakoid membrane arrangements, J. Microsc. (Oxford) 133: 55–60.CrossRefGoogle Scholar
  41. Palay, S. L., and Chan-Palay, V., 1973, High voltage electron microscopy of the central nervous system in Golgi preparations, J. Microsc. (Oxford) 97: 41–47.CrossRefGoogle Scholar
  42. Parsons, D. F., and Ratkowski, A. J., 1980, A survey of high voltage electron microscope opera¬tions, Ultramicroscopy 5: 209 - 213.CrossRefGoogle Scholar
  43. Paulin, J. J., 1975, The chondriome of selected trypanosomatids: A three-dimensional study based on serial thick sections and high voltage electron microscopy, J. Cell Biol. 66: 404–413.PubMedCrossRefGoogle Scholar
  44. Pesacreta, T. C., and Parthasarathy, M. V., 1984, Improved staining of microfilament bundles in plant cells for high voltage electron microscopy, J. Microsc. (Oxford) 133: 73–77.CrossRefGoogle Scholar
  45. Porter, K. R., and Tucker, J. B., 1981, The ground substance of the living cell, Sci. Am. 244 (3): 41–51.CrossRefGoogle Scholar
  46. Poux, N., Favard, P., Carasso, N., 1974, Etude en microscopie électronique haute tension de l’appareil vacuolaire dans les cellules méristématiques de racines de concombre, J. Microsc. (Paris) 21: 173–180.Google Scholar
  47. Rambourg, A., Marraud, A., Chretiem, M., 1973, Tri-dimensional structure of the forming face of the Golgi apparatus as seen in the high voltage electron microscope after osmium impregnation of the small nerve cells in the semilunar ganglion of the trigeminal nerve, J. Microsc. (Oxford) 97: 49–57.CrossRefGoogle Scholar
  48. Rambourg, A., Clermont, Y., Marraud, A., 1974, Three dimensional structure of the osmium impregnated Golgi apparatus as seen in the high voltage electron microscope, Am. J. Anat. 140: 27–45.PubMedCrossRefGoogle Scholar
  49. Research Resources Information Center, 1983, Biotechnology Resources: A Research Resources Directory, Division of Research Resources, National Institutes of Health, NIH Publication 83–1430.Google Scholar
  50. Reynolds, E. S., 1963, The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol. 17: 208–212.PubMedCrossRefGoogle Scholar
  51. Rieder, C. L., Bowser, S. S., 1983, Factors which influence the light microscopic visualization of biological material in sections prepared for electron microscopy, J. Microsc. (Oxford) 132: 71–80.CrossRefGoogle Scholar
  52. Rieder, C. L., Bowser, S. S., 1985, Correlative immunofluorescence and electron microscopy on the same section of Epon-embedded material, J. Histochem. Cytochem. 33: 165–171.PubMedCrossRefGoogle Scholar
  53. Rieder, C. L., Rupp, G., Bowser, S. S., 1985, Electron microscopy of semithick sections: Advantages for biomedical research, J. Electron Microsc. Tech. 2: 11–28.CrossRefGoogle Scholar
  54. Spurr, A. R., 1969, A low-viscosity epoxy resin embedding medium for electron microscopy, J. Ultrastruct. Res. 26: 31–43.PubMedCrossRefGoogle Scholar
  55. Tivol, W. F., Ratkowski, A. J., Parsons, D. F., 1983, EDX and EELS in the high-voltage electron microscope: Localization of elements in thick specimens, Neurotoxicology 4: 161–163.PubMedGoogle Scholar
  56. Todd, W. J., Wray, G. P., Hitchcock, P. J., 1984, Arrangement of pili in colonies of Neisseria gonorrhoeae, J. Bacteriol. 159: 312–320.PubMedGoogle Scholar
  57. Turner, J. N., See, C. W., Ratkowski, A. J., Chang, B. B., Parsons, D. F., 1981, Design and operation of a differentially pumped environmental chamber for the HVEM, Ultramicroscopy 6: 267–280.PubMedGoogle Scholar
  58. Venable, J. H., Coggeshall, R., 1965, A simplified lead citrate stain for use in electron microscopy, J. Cell Biol. 25: 407–408.PubMedCrossRefGoogle Scholar
  59. Weibull, C., 1974, Studies on thick sections of microorganisms using electron microscopes working at accelerating voltages from 60 to 1000 kV, J. Ultrastruct. Res. 47: 106–114.PubMedCrossRefGoogle Scholar
  60. Wolosewick, J. J., 1980, The application of polyethylene glycol to electron microscopy, J. Cell Biol. 86: 675–681.PubMedCrossRefGoogle Scholar
  61. Wolosewick, J. J., Porter, K. R., 1976, Stereo high-voltage electron microscopy of whole cells of the human diploid line W 1-38, Am. J. Anat. 147: 303–324.PubMedCrossRefGoogle Scholar
  62. Wolosewick, J. J., Porter, K. R., 1979, Microtrabecular lattice of the cytoplasmic ground substance: Artifact or reality, J. Cell Biol. 82: 114–139.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Sandra A. Nierzwicki-Bauer
    • 1
  1. 1.Department of BiologyRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations