Low-Temperature Embedding

  • Barbara L. Armbruster
  • Edward Kellenberger


The examination of cell structure by means of electron microscopy is severely limited by several factors: (1) preparation artifacts as living specimens are subjected to the rigors of chemical fixation, dehydration in organic solvents, and embedment in various plastics and resins (most involving high-temperature curing); (2) distortion generated during sectioning; and (3) beam damage during observation. Suitable preparation methods must be developed before the pursuit of high-resolution data from thin-sectioned material can generate meaningful results. Sjöstrand (1976) has considered the parameters necessary to minimize conformational changes: (1) peptide chain freedom of movement is lessened by inter- and intramolecular cross-linking, (2) low temperature should reduce the extent of conformational changes (i. e., rearrangement of the peptide chains) that are due to the actions of organic liquids, (3) complete dehydration should be avoided to maintain hydration shells, and (4) the specimen environment should be polar.


Hydroxypropyl Methacrylate Unstained Section Melamine Resin Glycol Methacrylate Prorocentrum Micans 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acetarin, J. D., 1981, Nouvelles recherches sur les résinés d’inclusion pour la microscopie électronique, Thesis, Univ. Louis Pasteur, Strasbourg, France.Google Scholar
  2. Acetarin, J. D., Villiger, W., Carlemalm, E., 1986, A new heavy metal containing resin for low temperature embedding and imaging of unstained sections of biological material, J. Electron Micro. Tech. (submitted).Google Scholar
  3. Altman, L. G., Schneider, B. G., Papermaster, D. S., 1984, Rapid embedding of tissues in Lowicryl K4M for immunoelectron microscopy, J. Histochem. Cytochem. 32: 1217–1223.PubMedCrossRefGoogle Scholar
  4. Amako, K., Murata, K., Umeda, A., 1983, Structure of the envelope of Escherichia coli observed by the rapid-freezing and substitution fixation method, Microbiol. Immunol. 27: 95–99.PubMedGoogle Scholar
  5. Angelopoulos, E., 1970, Pellicular microtubules in the family Trypanosomatidae, J. Protozool. 17: 39–51.PubMedGoogle Scholar
  6. Arborgh, B., Bell, P., Brunk, U., Collins, V. P., 1976, The osmotic effect of glutaraldehyde during fixation: A transmission electron microscopy, scanning electron microscopy and cytochemical study, J. Ultrastruct. Res. 56: 339–350.PubMedCrossRefGoogle Scholar
  7. Armbruster, B. L., Carlemalm, E., Chiovetti, R., Garavito, R. M., Hobot, J. A., Kellenberger, E., Villiger, W., 1982, Specimen preparation for electron microscopy using low temperature embedding resins, J. Microsc. (Oxford) 126: 77–85.CrossRefGoogle Scholar
  8. Armbruster, B. L., Garavito, R. M., Kellenberger, E., 1983a, Dehydration and embedding temperatures affect the antigenic specificity of tubulin and immunolabeling by the protein A- colloidal gold technique, J. Histochem. Cytochem. 31: 1380–1384.PubMedCrossRefGoogle Scholar
  9. Armbruster, B. L., Wunderli, H., Turner, B. M., Raska, I., Kellenberger, E., 1983b, Immu- nocytochemical localization of cytoskeletal proteins and histone 2B in isolated membrane- depleted nuclei, metaphase chromatin, and whole Chinese hamster ovary cells, J. Histochem. Cytochem. 31: 1385–1393.PubMedCrossRefGoogle Scholar
  10. Bachhiiber, K., Frôsch, D., 1983, Melamine resins, a new class of water-soluble embedding media for electron microscopy, J. Microsc. (Oxford) 130: 1–9.CrossRefGoogle Scholar
  11. Bashong, W., Bashong, C., Wurtz, M., Carlemalm, E., Kellenberger, C., and Kellenberger, E., 1984, Preservation of protein structures for electron microscopy by fixation with aldehydes and/or osmium tetroxide. Eur. J. Cell Biol. 35: 21–26.Google Scholar
  12. Bayer, M. E., Remsen, B. C., 1970, Structure of Escherichia coli after freeze-etching, J. Bacteriol. 101: 304–313.PubMedGoogle Scholar
  13. Bendayan, M., Shore, G., 1982, Immunocytochemical localization of mitochondrial proteins in the rat hepatocyte, J. Histochem. Cytochem. 30: 139–147.PubMedCrossRefGoogle Scholar
  14. Bernhard, W., 1969, A new staining procedure for electron microscopical cytology, J. Ultrastruct. Res. 27: 250–265.PubMedCrossRefGoogle Scholar
  15. Beveridge, T. J., 1981, Ultrastructure, chemistry and function of the bacterial wall, Int. Rev. Cytol. 72: 229–317.PubMedCrossRefGoogle Scholar
  16. Bilinski, M., Plattner, H., Matt, H., 1981, Secretory protein decondensation as a distinct Ca + 2- mediated event during the final steps of exocytosis in Paramecium cells, J. Cell Biol. 88: 179–188.PubMedCrossRefGoogle Scholar
  17. Birbeck, M. S. C., Mercer, E. H., 1956, Applications of an epoxide embedding medium to electron microscopy, J. R. Microsc. Soc. 76: 159–161.CrossRefGoogle Scholar
  18. Bordier, C., Garavito, R. M., Armbruster, B., 1982, Biochemical and structural analyses of microtubules in the pellicular membrane of Leishmania tropica, J. Protozool. 29: 560–565.PubMedGoogle Scholar
  19. Borysko, E., 1956, Recent developments in methacrylate embedding. I. A study of the polymerization damage phenomenon by phase contrast microscopy, J. Biophys. Biochem. Cytol. 2: 3–14 (Suppl.).Google Scholar
  20. Borysko, E., and Sapranauskas, P., 1954, A new technique for comparative phase-contrast and electron microscope studies of cells grown in tissue culture, with an evaluation of the technique by means of time-lapse cinematographs, Bull. Johns Hopkins Hosp. 95: 68-79.Google Scholar
  21. Carlemalm, E., Kellenberger, E., 1982, The reproducible observation of unstained embedded cellular material in thin sections: Visualization of an integral membrane protein by a new mode of imaging for STEM, EMBO J. 1: 63–67.PubMedGoogle Scholar
  22. Carlemalm, E., Garavito, R. M., Villiger, W., 1980, Advances in low temperature embedding for electron microscopy, in: Proceedings of the 7th European Congress on Electron Microscopy, Vol. 2 (P. Brederoo and W. de Priester), pp. 656–657.Google Scholar
  23. Carlemalm, E., Garavito, R. M., Villiger, W., 1982a, Resin development for electron microscopy and an analysis of embedding at low temperature, J. Microsc. (Oxford) 126: 123–143.CrossRefGoogle Scholar
  24. Carlemalm, E., Acetarin, J. D., Villiger, W., Colliex, C., Kellenberger, E., 1982b, Heavy metal-containing surroundings provide more “negative” contrast by Z-imaging in STEM than with conventional modes, J. Ultrastruct. Res. 80: 339–343.PubMedCrossRefGoogle Scholar
  25. Carlemalm, E., Colliex, C., and Kellenberger, E., 1985a, Contrast formation in electron microscopy of biological material, in: Advances in Electronics and Electronphysics ( P. W. Hawkes, ed.), pp. 269 - 334, Academic Press, New York.Google Scholar
  26. Carlemalm, E., Villiger, W., Hobot, J. A., Acetarin, J. D., Kellenberger, E., 1985b, Low temperature embedding with Lowicryl resins: Two new formulations and some applications, J. Microsc. (Oxford) 140: 55–63.CrossRefGoogle Scholar
  27. Cope, G. H., 1968, Low-temperature embedding in water-miscible methacrylates after treatment with antifreezes, J. R. Microsc. Soc. 88: 235–257.PubMedCrossRefGoogle Scholar
  28. Cope, G. H., and Williams, M. A., 1968, Quantitative studies on neutral lipid preservation in electron microscopy, J. R. Microsc. Soc. 88: 259–277.PubMedCrossRefGoogle Scholar
  29. Crewe, A. V., Langmore, J. P., Isaacson, M. S., 1975, Resolution and contrast in the scanning transmission electron microscope, in: Physical Aspects of Electron Microscopy and Microheam Analysis ( M. Siegel and D. R. Beaman, eds.), pp. 47–62, Wiley, New York.Google Scholar
  30. de Haller, G., Kellenberger, E., Rouiller, B., 1964, Etude au microscope électronique des plasmas contenant de l’acide desoxyribonucleique. III. Variations ultrastructurales des chromosomes d’Amphidinium, J. Microsc. (Paris) 3: 627–642.Google Scholar
  31. Douzou, P., 1977, Cryobiochemistry: An Introduction, Academic Press, New York.Google Scholar
  32. Dubochet, J., McDowall, A. W., Menge, B., Schmid, E. N., Lickfeld, K. G., 1983, Electron microscopy of frozen-hydrated bacteria, J. Bacteriol. 155: 381–390.PubMedGoogle Scholar
  33. Erlandsen, S. L., Parson, J. A., and Rodning, B. B., 1979, Technical parameters of immunostaining of osmicated tissue in epoxy sections, J. Histochem. Cytochem. 27: 1286–1289.PubMedCrossRefGoogle Scholar
  34. Fryer, P. R., Wells, C., and Ratcliffe, A., 1983, Technical difficulties overcome in the use of Lowicryl K4M electron microscopy embedding resin, Histochemistry 77: 141–143.PubMedCrossRefGoogle Scholar
  35. Garavito, R. M., Carlemalm, E., Villiger, W., 1980, Low temperature embedding of spermatids, in: Proceedings of the 7th European Congress on Electron Microscopy, Vol. 2 (P. Brederoo and W. de Priester), pp. 658–659.Google Scholar
  36. Garavito, R. M., Carlemalm, E., Colliex, C., Villiger, W., 1982, Septate junction ultrastructure as visualized in unstained and stained preparations, J. Ultrastruct. Res. 80: 344–353.PubMedCrossRefGoogle Scholar
  37. Giesbrecht, P., 1965, Ùber das Ordnungsprinzip in den Chromosomen von Dinoflagellaten und Bakterien, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. 196: 516–519.Google Scholar
  38. Glauert, A. M., Glauert, R. H., 1958, Araldite as an embedding medium in electron microscopy, J. Biophys. Biochem. Cytol. 4: 191–194.PubMedCrossRefGoogle Scholar
  39. Glauert, A. M., Rogers, G. E., Glauert, R. H., 1956, A new embedding medium for electron microscopy, Nature (London) 178: 803.CrossRefGoogle Scholar
  40. Hayat, M. A., 1970, Principles and Techniques of Electron Microscopy, Vol. 1, Van Nostrand- Reinhold, Princeton, New Jersey.Google Scholar
  41. Herzog, M., Soyer, M. O., 1983, The native structure of dinoflagellate chromosomes and their stabilization by Ca2+ and Mg2+ cations, Eur. J. Cell Biol. 30: 33–41.PubMedGoogle Scholar
  42. Hobot, J. A., Carlemalm, E., Villiger, W., Kellenberger, E., 1984, Periplasmic gel: New concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods, J. Bacteriol. 160: 143–152.PubMedGoogle Scholar
  43. Hobot, J. A., Villiger, W., Escaig, J., Maeder, M., Ryter, A., Kellenberger, E., 1985, The shape and fine structure of the nucleoid observed on sections of ultra-rapid frozen and cryosubstituted bacteria, J. Bacteriol. 162: 960–971.PubMedGoogle Scholar
  44. Hoppe, W., 1974, Towards three-dimensional “electron microscopy” at atomic resolution, Naturwissenschaften 61: 239–249.PubMedCrossRefGoogle Scholar
  45. Kellenberger, E., 1962, The study of natural and artificial DNA-pIasms by thin sections, in: The Interpretation of Ultrastructure, Vol. 1, pp. 233–249, Symp. Int. Soc. Cell Biol., Berne.Google Scholar
  46. Kellenberger, E., Schwab, W., Ryter, A., 1956, L’inclusion d’un copolymere du groupe des polyesters comme materiel d’inclusion en ultramicrotomie, Experientia 12: 421–422.PubMedCrossRefGoogle Scholar
  47. Kellenberger, E., Carlemalm, E., Villiger, W., Roth, J., Garavito, R. M., 1980, LowDenatura- tion Embedding for Electron Microscopy of Thin Sections, Chemische Werke Lowi, G. m. b. H., Waldkraiburg.Google Scholar
  48. Kellenberger, E., Carlemalm, E., Stauffer, E., Kellenberger, C., Wunderli, H., 1981, In vitro studies of the fixation of DNA, nucleoprotamine, nucleohistone and proteins, Eur. J. Cell Biol. 25: 1–4.PubMedGoogle Scholar
  49. Kersken, H., Tiggemann, R., Westphal, C., Plattner, H., 1984, The secretory contents of Paramecium tetraurelia trichocysts: Ultrastructural cytochemical characterization, J. Histochem. Cytochem. 32: 179–192.PubMedCrossRefGoogle Scholar
  50. Lange, R. H., Blôdern, J., Magdowski, G., Trampish, H. J., 1979, Crystalline preparations of rhombohedral porcine insulin as studied by electron diffraction, J. Ultrastruct. Res. 68: 81–91.PubMedCrossRefGoogle Scholar
  51. Leduc, E. H., Bernhard, W., 1967, Recent modifications of the glycol methacrylate embedding procedure, J. Ultrastruct. Res. 19: 196–199.PubMedCrossRefGoogle Scholar
  52. Leduc, E. H., Holt, S. J., 1965, Hydroxypropyl methacrylate, a new water-miscible embedding medium for electron microscopy, J. Cell Biol. 26: 137–155.PubMedCrossRefGoogle Scholar
  53. Livolant, F., 1980, Mise en evidence d’actine dans les trichocystes de Prorocentrum micans (Dinoflagelle), Biol. Cell 39: 10a.Google Scholar
  54. Luft, J. H., 1973, Embedding media—Old and new, in: Advanced Techniques in Biological Electron Microscopy ( J. K. Koehler, ed.), pp. 1–34, Springer, Berlin.CrossRefGoogle Scholar
  55. Michel-Salamin, L., Gautier, A., Soyer-Gobillard, M. O., de Billy, F., Dubochet, J., McDowall, A. W., Kellenberger, E., Carlemalm, E., 1984, Appearance of “arch-shaped” chromosomes in dinoflagellates as observed in thin sections and cryofractures, following various preparation procedures, in: Proceedings 8th European Congress Electron Microscopy, Vol. 3 ( A. Csanady, P. Rohlich, and D. Szabo), pp. 1803–1804.Google Scholar
  56. Millonig, G., 1961, A modified procedure for lead staining of thin sections, J. Biophys. Biochem. Cytol. 11: 736–739.PubMedCrossRefGoogle Scholar
  57. Moncany, M. L. J., 1982, Determination des conditions intracellulaires chez E. coli: Consequences biologiques de leur modification, Thesis, University of Basel.Google Scholar
  58. Morel, F. M. M., Baker, R. F., H. Wayland, 1971, Quantitation of human red blood cell fixation by glutaraldehyde, J. Cell Biol. 48: 91–100.PubMedCrossRefGoogle Scholar
  59. Newman, S. B., Borysko, E., Swerdlow, M., 1949, New sectioning techniques for light and electron microscopy, Science 110: 66–68.PubMedCrossRefGoogle Scholar
  60. Petsko, G. A., 1975, Protein crystallography at sub-zero temperatures: Cryo-protective mother liquors for protein crystals, J. Mol. Biol. 96: 381–392.PubMedCrossRefGoogle Scholar
  61. Plattner, H., Westphal, C., Tiggemann, R., 1982, Cytoskeleton-secretory vesicle interactions during the docking of secretory vesicles at the cell membrane in Paramecium tetraurelia cells, J. Cell Biol. 92: 368–377.PubMedCrossRefGoogle Scholar
  62. Rauh, J. J., Nelson, D. L., 1981, Calmodulin is a major component of extruded trichocysts from Paramecium tetraurelia, J. Cell Biol. 91: 860–865.PubMedCrossRefGoogle Scholar
  63. Reichelt, R., Engel, A., 1984, Monte Carlo calculations of elastic and inelastic electron scattering in biological and plastic materials, Ultramicroscopy 13: 279–294.CrossRefGoogle Scholar
  64. Reichelt, R., Carlemalm, E., Villiger, W., Engel, A., 1985, Concentration determination of embedded biological matter by scanning transmission electron microscopy, Ultramicroscopy 16: 69–80.CrossRefGoogle Scholar
  65. Reynolds, E. S., 1963, The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, Cell Biol. 17: 208–213.CrossRefGoogle Scholar
  66. Rosenberg, M., Bartl, P., Lesko, J., 1960, Water-soluble methacrylate as an embedding medium for the preparation of ultrathin sections, J. Ultrastruct. Res. 4: 298–303.PubMedCrossRefGoogle Scholar
  67. Roth, J., 1982, The protein A-gold (pAg) technique—A qualitative and quantitative approach for antigen localization on thin sections, in: Techniques in Immunocytochemistry, Vol. 1 ( G. R. Bullock and P. Petrusz, eds.), pp. 107 - 133, Academic Press, New York.Google Scholar
  68. Roth, J., 1983a, Application of lectin-gold complexes for electron microscopic localization of glycoconjugates on thin sections, J. Histochem. Cytochem. 31: 987–999.PubMedCrossRefGoogle Scholar
  69. Roth, J., 1983b, The colloidal gold marker system for light and electron microscopy: Theory and application, in: Techniques in Immunocytochemistry, Vol. 2 ( G. R. Bullock and P. Petrusz, eds.), pp. 217–284, Academic Press, New York.Google Scholar
  70. Roth, J., 1984, Light and electron microscopic localization of antigenic sites in tissue sections by the protein A-gold technique, Acta Histochem. 29: 9–22.Google Scholar
  71. Roth, J., Bendayan, M., Carlemalm, E., and Villiger, W., 1980, Immunocytochemistry in thin sections with the protein A-gold (pAg) technique, Experientia 36: 757.Google Scholar
  72. Roth, J., Bendayan, M., Carlemalm, E., Villiger, W., Garavito, R. M., 1981, Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue, J. Histochem. Cytochem. 29: 663–671.PubMedCrossRefGoogle Scholar
  73. Ryter, A., and Kellenberger, E., 1958, L’inclusion au polyester pour l’ultramicrotomie, J. Ultrastruct. Res. 2: 200–214.PubMedCrossRefGoogle Scholar
  74. Schreil, W. H., 1964, Studies on the fixation of artificial and bacterial DNA-plasms for the electron microscopy of thin sections, J. Cell Biol. 22: 1–20.PubMedCrossRefGoogle Scholar
  75. Schwab, M. E., Thônen, H., 1978, Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris, J. Cell Biol. 77: 1–13.PubMedCrossRefGoogle Scholar
  76. Shinagawa, Y., Shinagawa, Y., 1978, Melamine resin as water-containing embedding medium for electron microscopy, J. Electron Microsc. 27: 13–17.Google Scholar
  77. Sjôstrand, F. S., 1976, The problems of preserving molecular structure of cellular components in connection with electron microscopic analysis, J. Ultrastruct. Res. 55: 271–280.PubMedCrossRefGoogle Scholar
  78. Sjôstrand, F. S., Barajas, L., 1968, Effect of modifications in conformation of protein molecules on structure of mitochondrial membranes, J. Ultrastruct. Res. 25: 121–155.PubMedCrossRefGoogle Scholar
  79. Sjôstrand, F. S., Kretzer, F., 1975, A new freeze-drying technique applied to the analysis of the molecular structure of mitochondrial and chloroplast membranes, J. Ultrastruct. Res. 53: 1–28.PubMedCrossRefGoogle Scholar
  80. Spurr, A. R., 1969, A low-viscosity epoxy resin embedding medium for electron microscopy, J. Ultrastruct. Res. 26: 31–43.PubMedCrossRefGoogle Scholar
  81. Stàubli, W., 1963, A new embedding technique for electron microscopy, combining a water-soluble epoxy resin ( Durcupan) with water-insoluble Araldite, J. Cell Biol. 16: 197-201.Google Scholar
  82. Thomas, R. N., Cox, E. R., 1973, Observations on the symbiosis of Peridinium balticum and its intracellular alga. I. Ultrastructure, J. Phycol. 9: 304–323.Google Scholar
  83. Watson, M. L., 1963, Explosionfree methacrylate embedding, J. Appl. Phys. 34: 2507.CrossRefGoogle Scholar
  84. Weibull, C., Carlemalm, E., Villiger, W., Kellenberger, E., Fakan, J., Gautier, A., Larsson, C., 1980, Low-temperature embedding procedures applied to chloroplasts, J. Ultrastruct. Res. 73: 233–244.PubMedCrossRefGoogle Scholar
  85. Weibull, C., Christiansson, A., Carlemalm, E., 1983, Extraction of membrane lipids during fixation, dehydration and embedding of Acholeplasma laidlawii-cells for electron microscopy, J. Microsc. (Oxford) 129: 201–207.CrossRefGoogle Scholar
  86. Weibull, C., Villiger, W., Carlemalm, E., 1984, Extraction of lipids during freeze-substitution of Acholeplasma laidlawii-cells for electron microscopy, J. Microsc. (Oxford) 134: 213–216.CrossRefGoogle Scholar
  87. Wunderli, H., Westphal, M., Armbruster, B., Labhart, P., 1983, Comparative studies on the structural organization of membrane-depleted nuclei and metaphase chromosomes, Chromosoma 88: 241–248.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Barbara L. Armbruster
    • 1
  • Edward Kellenberger
    • 2
  1. 1.Division of Infectious DiseasesWashington University Medical SchoolSt. LouisUSA
  2. 2.Abteilung Mikrobiologie BiozentrumUniversität BaselBaselSwitzerland

Personalised recommendations