Advertisement

Casein Genes and Genetic Engineering of the Caseins

  • Young Kang
  • Rafael Jimenez-Flores
  • Tom Richardson
Part of the Basic Life Sciences book series

Abstract

The caseins are the major proteins of milk providing needed amino acids to the suckling infant. The bovine caseins have been the most thor oughly studied and serve as the principal basis for the dairy industry. The bovine caseins are comprised of 4 major polypeptide families: αsl-, αs2-, ß-, and κ-caseins (52). They are phosphorylated to varying degrees generally containing 8, 10–13, 5, and one seryl phosphate residues per monomer, respectively. The fact that some molecules of κ-casein are also glycosylated while others do not contain carbohydrate residues gives rise to electrophoretic heterogeneity.

Keywords

Mammary Gland Milk Protein Casein Micelle Cheddar Cheese Casein Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackburn, D.E., A.A. Hobbs, and J.M. Rosen (1982) Rat ß-casein DNA: Sequence analysis and evolutionary comparisons. Nucl. Acids Res.10:2295–2307.PubMedCrossRefGoogle Scholar
  2. 2.
    Breathnach, R., and P. Chambon (1981) Organization and expression of eukaryotic split genes coding for proteins. Ann. Rev. Biochem. 50: 349–383.PubMedCrossRefGoogle Scholar
  3. 3.
    Campbell, S.M., and J.M. Rosen (1984) Comparison of the whey acidic protein genes of the rat and mouse. Nucl. Acids Res. 12:8685–8697.PubMedCrossRefGoogle Scholar
  4. 4.
    Compton, J.G., W.T. Schrader, and B.W. O’Malley (1983) DNA sequence preference of the progesterone receptor. Proc. Natl. Acad. Sci., USA80:16–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Craig, R.K., L. Hall, D. Parker, and P. Campbell (1981) The construc-tion, identification and partial characterization of plasmids containing guinea-pig milk protein complementary DNA sequences. Biochem. J.194:989–998.PubMedGoogle Scholar
  6. 6.
    Craig, R.K., D. Mcllreavy, and R.L. Hall (1978) Separation and partial characterization of guinea-pig caseins. Biochem. J. 173:633–641.PubMedGoogle Scholar
  7. 7.
    Craik, C.S. (1985) Use of oligonucleotides for site-specific mutagenesis. BioTechniques 3:12–16.Google Scholar
  8. 8.
    Craik, C.S., W.J. Rutler, and R. Fletlerick (1983) Splice junctions: Association with variation in protein structure. Science 220:1125–1129.PubMedCrossRefGoogle Scholar
  9. 9.
    Creamer, L.K., and N.F. Olson (1982) Rheological evaluation of cheddar cheese. J. Food Sci. 57:631–636.CrossRefGoogle Scholar
  10. 10.
    Creamer, L.K., T. Richardson, and D.A.D. Parry (1981) Secondary structure of bovine sl-and ß-casein in solution. Arch. Biochem. Biophys.211:689–696.PubMedCrossRefGoogle Scholar
  11. 11.
    Dalbadie-McFarland, G.D., L.W. Cohen, A.D. Riggs, C. Morin, K. Itakura, and J.H. Richards (1982) Oligonnucleotide-directed mutagenesis as a general and powerful method for studies of protein function. Proc. Natl. Acad. Sci., USA 79:6409–6413.PubMedCrossRefGoogle Scholar
  12. 12.
    Dalgleish, D.G. (1982) The enzymatic coagulation of milk. In Develop-ments in Dairy Chemistry, Vol. 1, P.F. Fox, ed. Applied Sci. Publ., New York, pp. 157–188.Google Scholar
  13. 13.
    Dayal, R., J. Huslmann, Y.M.L. Suard, and J.-P. Kraebenbuhl (1982) Chemical and immunochemical characterization of caseins and the major whey proteins of rabbit milk. Biochem. J. 201:71–79.PubMedGoogle Scholar
  14. 14.
    Dayhoff, M.O. (1976) Miscellaneous proteins. In Atlas of Protein Se quence and Structure, Vol. 5 (Suppl. 2), M.O. Dayhoff, ed. National Biomedical Research Foundation, Bethesda, Maryland, pp. 261–263.Google Scholar
  15. 15.
    Dean, D.C., R. Gope, B.J. Knoll, M.E. Riser, and B.W. O’Malley (1984) A similar 5’-flanking region is responsible for estrogen and progesterone induction of ovalbumin gene expression. J. Biol. Chem. 259: 9967–9970.PubMedGoogle Scholar
  16. 16.
    Eigel, W.N., J.E. Butler, C.A. Ernstrom, H.M. Farrell, Jr., V.R. Harwalkar, R. Jenness, and R. McL. Whitney (1984) Nomenclature of proteins of cow’s milk. Fifth revision. J. Dairy Sci. 67:1599.CrossRefGoogle Scholar
  17. 17.
    Emtage, J.S., S. Angal, M.T. Doel, T.J.R. Harris, B. Jenkins, G. Lalley, and P.A. Lome (1983) Synthesis of calf prochymosin (prorennin) in Escherichia coli. Proc. Natl. Acad. Sci., USA 80:3671–3676.PubMedCrossRefGoogle Scholar
  18. 18.
    Fox, P.F. (1982) Heat-induced coagulation of milk. In Developments in Dairy Chemistry, Vol. 1, P.F. Fox, ed. Applied Sci. Publ., New York, pp. 189–228.Google Scholar
  19. 19.
    Gupta, P., J.M. Rosen, P. D’Eustachio, and F.M. Ruddle (1982) Localization of the casein gene family to a single mouse chromosome. J. Cell. Biol. 93:199–204.PubMedCrossRefGoogle Scholar
  20. 20.
    Guyette, W.A., R.J. Matusik, and J.M. Rosen (1979) Prolactin-mediated transcriptional and posttranscriptional control of casein gene expression. Cell 17:1013–1023.PubMedCrossRefGoogle Scholar
  21. 21.
    Hammer, R.E., V.G. Pursel, C.E. Rexroad, Jr., R.J. Wall, D.J. Bolt, K.M. Ebert, R.D. Palmiter, and R.L.-Brinster (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683.PubMedCrossRefGoogle Scholar
  22. 22.
    Hennighausen, L.G., and A.E. Sippel (1982) Characterization and cloning of the mRNAs specific for the lactating mouse mammary gland. FEBS125:131–141.Google Scholar
  23. 23.
    Hobbs, A.A., D.A. Richards, D.J. Kessler, and J.M. Rosen (1982) Complex hormonal regulation of rat casein gene expression. J. Biol. Chem. 257:3598–3605.PubMedGoogle Scholar
  24. 24.
    Hobbs, A.A., and J.M. Rosen (1982) Sequence of rat and casein in mRNA: Evolutionary comparison of the calcium-dependent rat casein multigene family. Nucl. Acids Res. 10:8079–8098.PubMedCrossRefGoogle Scholar
  25. 25.
    Ivanov, V.N., D.R. Kersholite, A.A. Bayer, A.A. Akhondora, G.E. Solimova, E.S. Judin-Kora, and S.I. Gorodetsky (1984) Identification of bacterial clones encoding bovine caseins by direct immunological screening of the cDNA library. Gene 32:381–388.PubMedCrossRefGoogle Scholar
  26. 26.
    Jenness, R. (1982) Interspecies comparisons of milk proteins. In Developments in Dairy Chemistry, P.F. Fox, ed. Applied Sci. Publ., New York, pp. 87–114.Google Scholar
  27. 27.
    Jones, W.K., L.-Y. Yu-Lee, S.M. Clift, T.L. Brown, and J.M. Rosen (1985) The rat casein multigene family. III. Fine structure and evolution of the ß-casein gene. J. Biol. Chem. 260:7042–7050.PubMedGoogle Scholar
  28. 28.
    Kinsella, J.E. (1982) Relationships between structure and functional properties of food proteins. In Food Proteins, P.F. Fox and J.J. Condon, eds. Applied Sci. Publ., New York, pp. 51–104.Google Scholar
  29. 29.
    Kroeker, E.M., K.F. Ng-Kwai-Hang, J.F. Hayes, and J.E. Moxeley (1985) Heritabilities of relative percentages of major bovine casein and serum proteins in test-day milk samples. J. Dairy Sci. 68:1346–1348.CrossRefGoogle Scholar
  30. 30.
    Kurcherlapati, R., and A.I. Skoultchi (1984) Introduction of purified genes into mammalian cells. CRC Crit. Rev. Biochem. 16:349–382.CrossRefGoogle Scholar
  31. 31.
    Matusik, R.J., and J.M. Rosen (1978) Prolactin induction of casein mRNA in organ culture. J. Biol. Chem. 253:2343–2347.PubMedGoogle Scholar
  32. 32.
    Matyukov, V.S., and A.P. Urmysher (1980) Linkage of l-, ß-and k-casein loci in cattle. Genetika 16:884–886.Google Scholar
  33. 33.
    Maugh, II, T.H. (1984) Need a catalyst? Design an enzyme. Science223:269–271.PubMedCrossRefGoogle Scholar
  34. 34.
    Maxam, A.M., and W. Gilbert (1977) A new method of sequencing DNA. Proc. Natl. Acad. Sci., USA 74:560–567.PubMedCrossRefGoogle Scholar
  35. 35.
    Mehta, N.M., M.R. El-Gewely, J. Joshi, R.B. Helling, and M.R. Banerjee (1981) Cloning of various ß-casein gene sequences. Gene 15:285–288.PubMedCrossRefGoogle Scholar
  36. 36.
    Mephan, T.B., P. Gage, and J.C. Mercier (1982) Biosynthesis of milk proteins. In Developments in Dairy Chemistry, Vol. 1, P.F. Fox, ed. Applied Sci. Publ., New York, pp. 115–156.Google Scholar
  37. 37.
    Mercier, J.-C., and P. Gaye (1982) Early events in secretion of main milk proteins: Occurrence of precursors. J. Dairy Sci. 65:299.PubMedCrossRefGoogle Scholar
  38. 38.
    Mercier, J.-C., G. Haze, P. Gaye, and D. Hue (1978) Amino terminal se-quence of the precursor of ovine ß-lactoglobulin. Biochem. and Bio phys. Res. Comm. 82(4):1236–1245.CrossRefGoogle Scholar
  39. 39.
    Nagao, M., M. Maki, R. Sasaki, and H. Chiba (1984) Isolation and sequence analysis of bovine sl-casein cDNA clone. Agric. Biol. Chem.48(6):1663–1667.CrossRefGoogle Scholar
  40. 40.
    Old, R.W., and S.B. Primrose (1981) Principles of Gene Manipulation: An Introduction to Genetic Engineering, 2nd ed., University of California Press, Berkeley, California, 214 pp.Google Scholar
  41. 41.
    Ornitz, D.M., R.D. Palmiter, R.E. Hammer, R.L. Brinster, G.H. Swift, and R.J. MacDonald (1985) Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature 313:600–602.PubMedCrossRefGoogle Scholar
  42. 42.
    Palmiter, R.D., and R.L. Brinster (1985) Transgenic mice. Cell 41: 343–345.PubMedCrossRefGoogle Scholar
  43. 43.
    Patton, S., U. Welsch, and S. Singh (1984) Genetic engineering of the mammary gland by intramammary infusion technique. J. Dairy Sci. 67: 1323–1328.PubMedCrossRefGoogle Scholar
  44. 44.
    Queen, C. (1983) A vector that uses phage signals for efficient synthesis of proteins in Escherichia coli. J. Mol. Appl. Gen. 2:1–10.Google Scholar
  45. 45.
    Rosen, J.M., R.J. Matusik, D.A. Richards, P. Gupta, and J.R. Rodgers (1980) Multihormonal regulation of casein gene expression at the transcriptional and posttranscriptional levels in the mammary gland. Re cent Prog. Horm. Res. 36:157–193.Google Scholar
  46. 46.
    Rosen, J.M., S.L.C. Woo, and J.P. Comstock (1975) Regulation of casein messenger RNA during the development of the rat mammary gland. Bio chemistry 14(13):2895–2903.Google Scholar
  47. 47.
    Sanger, F., S. Nicklen, and A.R. Coulson (1977) DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci., USA 74:5463–5468.PubMedCrossRefGoogle Scholar
  48. 48.
    Sawyer, L., M.Z. Papiz, C.T. North, and E.E. Eliopoulos (1985) Structure and function of bovine ß-lactoglobulin. Biochem. Soc. Transac.13:265–266.Google Scholar
  49. 49.
    Schmidt, D.G. (1982) Association of caseins and casein micelle structure. In Developments in Dairy Chemistry, Vol. 1, P.F. Fox, ed. Applied Sci. Publ., New York, pp. 61–86.Google Scholar
  50. 50.
    Stewart, A.F., I.M. Willis, and A.G. MacKinlay (1984) Nucleotide sequences of bovine sl-and -casein cDNAs. Nucl. Acids Res. 12(9): 3895–3907.PubMedCrossRefGoogle Scholar
  51. 51.
    Suard, Y.M.L., M. Tosi, and J.P. Kraehenbuhl (1982) Characterization of the translation products of the major mRNA species from rabbit lactating mammary glands and construction of bacterial recombinants containing casein and lactalbumin complementary DNA. Biochem. J.201:81–90.PubMedGoogle Scholar
  52. 52.
    Swaisgood, H.E. (1982) Chemistry of milk protein. In Developments in Dairy Chemistry, Vol. 1, P.F. Fox, ed. Applied Sci. Publ., New York, pp. 1–60.Google Scholar
  53. 53.
    Swift, G.H., R.E. Hammer, R.J. MacDonald, and R.L. Brinster (1984) Tissue-specific expression of the rat pancreatic elastase I gene in transgenic mice. Cell 38:639–646.PubMedCrossRefGoogle Scholar
  54. 54.
    Topper, Y.S. (1970) Multiple hormone interactions in the development of mammary gland in vitro. Recent Prog. Horm. Res. 26:287–308.PubMedGoogle Scholar
  55. 55.
    Ulmer, K. (1983) Protein engineering. Science 219:666–669.PubMedCrossRefGoogle Scholar
  56. 56.
    Walstra, P., and R. Jenness (1984) Dairy Chemistry and Physics, John Wiley and Sons, New York, pp. 359–361.Google Scholar
  57. 57.
    Watson, J.D., J. Tooze, and D.T. Kurtz (1983) Recombinant DNA: A Short Course, W.H. Freeman and Co., New York, 260 pp.Google Scholar
  58. 58.
    Wilkinson, A.J., A.F. Fersht, D.M. Blow, P. Carter, and G. Winter (1984) A large increase in enzyme-substrate affinity by protein engi-neering. Nature 307:187–188.PubMedCrossRefGoogle Scholar
  59. 59.
    Willis, I.M., A.F. Stewart, A. Caputo, A.R. Thompson, and A.G. Mackinlay (1982) Construction and identification by partial nucleotide sequence analysis of bovine casein and ß-lactoglobulin cDNA clones. DNA l(4):375–386.CrossRefGoogle Scholar
  60. 60.
    Yu-Lee, L.-Y., and J.M. Rosen (1983) The rat casein multigene family. I. Fine structure of the casein gene. J. Biol Chem. 258:10794–10804.PubMedGoogle Scholar
  61. 61.
    Zoller, M.J., and M. Smith (1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods in Enzymology 100: 468–478.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Young Kang
    • 1
  • Rafael Jimenez-Flores
    • 1
  • Tom Richardson
    • 1
  1. 1.Department of Food Science and TechnologyUniversity of CaliforniaDavisUSA

Personalised recommendations