Advertisement

Mapping Genes in Domesticated Animals

  • Frank H. Ruddle
  • Rudolf Fries
Part of the Basic Life Sciences book series

Abstract

During the last few decades, animal breeders have been very successful in breeding animals that are superior in the production of milk, eggs, meat, and wool. The strategies for optimized breeding of livestock have been based on the concepts of quantitative genetics which assume that there are several genes, possibly on different chromosomes, each of which has a certain effect on a particular quantitative trait. However, we do not know how many genes are actually involved in the expression of a given quantita tive trait or how each gene contributes to the trait and where it is located on the chromosomes. Such knowledge will become crucial for improvements in the breeding of animals with a heightened resistance to diseases in unfavorable environments or that have better fertility but are still capable of producing good yields of milk, eggs, meat, or wool. Modern methods of gene mapping, so far mostly applied in mice and man, offer new ways towards a better understanding of the genetic determination of animal performance.

Keywords

Thymidine Kinase Somatic Cell Hybrid Hybrid Line Domestic Species Somatic Cell Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aridresen, E., and L.N. Baker (1964) The C-blood group system in pigs and the detection and estimation of linkage between the C and J sys tems. Genetics 49:379–386.Google Scholar
  2. 2.
    Andresen, E., and P. Jensen (1977) Close linkage established between HAL locus for halothane sensitivity and PHI (phosphohexose isomerase) locus in pigs of the Danish Landrace breed. Nord. Vet. Med. 29:502–504.PubMedGoogle Scholar
  3. 3.
    Baker, R.M., D.M. Brunette, R. Mankovitz, L.H. Thompson, G.F. Whitmore, L. Siminovitch, and J.E. Till (1974) Ouabain-resistant mutants of mouse and hamster cells in culture. Cell 1:9–21.CrossRefGoogle Scholar
  4. 4.
    Botstein, D., R.L. White, M. Skolnick, and R.W. Davis (1980) Construction of a genetic linkage map using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314–331.PubMedGoogle Scholar
  5. 5.
    Brennand, J., D.S. Konecki, and C.T. Caskey (1983) Expression of human and Chinese hamster hypoxanthine-guanine phosphoribosyltransferase cDNA recombinants in cultured Lesh-Nyhan and Chinese hamster fibroblasts. J. Biol. Chem. 16:9593–9596.Google Scholar
  6. 6.
    Briles, W.E., R.W. Briles, R.E. Taffs, and H.A. Stone (1983) Resistance to a malignant lymphoma in chicken is mapped to a subregion of major histocompatibility (B) complex. Science 219:977–979.PubMedCrossRefGoogle Scholar
  7. 7.
    Caspersson, T., L. Zech, E.J. Modest, G.E. Foley, U. Wagh, and E. Simonsson (1969) Chemical differentiation with fluorescence alkylating agents in Vicia faba metaphase chromosomes. Exptl. Cell Res. 58:128–140.PubMedCrossRefGoogle Scholar
  8. 8.
    Christensen, K. (1980) Evidence of polymorphism of the nuclear organizer region (N-Band) in pig chromosomes. Proceedings of the 4th Euro pean Colloquium on Cytogenetics of Domestic Animals, Uppsala, pp. 464–468.Google Scholar
  9. 9.
    Croce, C.M., and G. Klein (1985) Chromosome translocations and human cancer. Scientific American 252:54–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Di Berardino, D., and L. Iannuzzi (1982) Detailed description of Rbanded bovine chromosomes. J. Hered. 73:434–438.PubMedGoogle Scholar
  11. 11.
    Dolf, G. (1984) Genkartierung beim Schwein mit Hilfe von somatischen Zellhybriden. Thesis no. 7644, Eidgenössische Technische Hochschule, Zürich.Google Scholar
  12. 12.
    Donahue, R.P., W.B. Bias, J.H. Renwick, and V.A. McKusick (1968) Probable assignment of the Duffy blood group locus to chromosome 1 in man. Proc. Natl. Acad. Sci., USA 61:949-955. 12a. Eighth International Human Gene Mapping Workshop (1985) Cytogenet. Cell Genet. Vol. 39 (in press).PubMedCrossRefGoogle Scholar
  13. 13.
    Förster, M., and W. Hecht (1984) Some provisional gene assignments in pig. Proceedings of the 6th European Colloquium on Cytogenetics of Domestic Animals, Zurich, pp. 351–355.Google Scholar
  14. 14.
    Förster, M., G. Stranzinger, and B. Hellkuhl (1980) X-chromosomal gene assignment of swine and cattle. Naturwissenschaften 67:48.PubMedCrossRefGoogle Scholar
  15. 15.
    Fries, R., and F.H. Ruddle (1985) Gene mapping in domesticated ani mals. In Biotechnology for Solving Agricultural Problems, Vol. X, J. St. John, ed. (in press).Google Scholar
  16. 16.
    Fries, R., and G. Stranzinger (1982) Chromosomal mutations in pigs derived from X-irradiated semen. Cytogenet. Cell Genet. 34:55–66.PubMedCrossRefGoogle Scholar
  17. 17.
    Fries, R., G. Stranzinger, and P. Vögeli (1983) Provisional assignment of the G-blood group locus to chromosome 15 in swine. J. Hered. 74: 426–430.Google Scholar
  18. 18.
    Fries, R., B.A. Rasmusen, V.L. Jarrell, and R.R. Maurer (1984) Mapping of the gene for G blood antigens to chromosome 15 in swine. Anim. Blood Grps. Biochem. Genet. 15:251–258.CrossRefGoogle Scholar
  19. 19.
    Gall. J.G., and M.L. Pardue (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci., USA 63:378–383.PubMedCrossRefGoogle Scholar
  20. 20.
    Geffrotin, C., C.P. Popescu, E.P. Cribiu, J. Bosher, C. Renard, P. Chardon, and M. Vaiman (1984) Assignment of MHC in swine to chromosome 7 by in situ hybridization and serological typing. Ann. Genet. 27: 213–219.PubMedGoogle Scholar
  21. 21.
    Gellin, J., F. Benne, M.C. Hors-Cayla, and M. Gillois (1980) Gene mapping in the pig (sus-scrofa L.). Study of two syntenic groups G6PD, PGK, HPRT and PKM2, MPl. Ann. Genet. 23:15–21.PubMedGoogle Scholar
  22. 22.
    Gellin, J., G. Echard, F. Benne, and M. Gillois (1981) Pig gene mapping: PKM2-MP1-NP synteny. Cytogenet. Cell Genet. 30:59–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Gusella, J.F., N.S. Wexler, P.M. Conneally, S.L. Naylor, M.A. Anderson, R.E. Tanzi, P.C. Watkins, K. Ottina, M.R. Wallace, A.Y. Saka-guchi, A.B. Young, I. Shoulson, E. Bonilla, and J.B. Martin (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature (London) 306:234–238.PubMedCrossRefGoogle Scholar
  24. 24.
    Harding, J.D.J., J.T. Done, J.F. Harbourne, and F.R. Gilbert (1973) Congenital tremor type AIII in pigs: An hereditary sex linked cerebrospinal hypomyelinogenesis. Vet. Rec. 92:527–529.PubMedCrossRefGoogle Scholar
  25. 25.
    Harper, M.E., and G.F. Saunders (1981) Localization of single copy DNA sequences on G-banded human chromosomes by in situ hybridization. Chromosoma 83:431–439.PubMedCrossRefGoogle Scholar
  26. 26.
    Hruban, V., H. Simon, J. Hradecky, and F. Jilek (1976) Linkage of the pig main histocompatibility complex and the J blood group system. Tissue Antigens 7:267–271.PubMedCrossRefGoogle Scholar
  27. 27.
    John, H.A., M.L. Birnstiel, and K.W. Jones (1969) RNA-DNA hybrids at the cytological level. Nature (London) 223:582–587.PubMedCrossRefGoogle Scholar
  28. 28.
    Juneja, R.K., B. Gahne, I. Edfors-Lilja, and E. Andresen (1983) Genetic variation at a pig serum protein locus, Po-2, and its assignment to the Phi, Hal, S, H, Pgd linkage group. Anim. Blood Grps. Biochem. Genet. 14:27–36.CrossRefGoogle Scholar
  29. 29.
    Kamarck, M.E., P.E. Barker, R.L. Miller, and F.H. Ruddle (1984) Somatic hybrid panels. Exptl. Cell Res. 152:1–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Klobutcher, L.A., and F.H. Ruddle (1981) Chromosome mediated gene transfer. Ann. Rev. Biochem. 50:533–554.PubMedCrossRefGoogle Scholar
  31. 31.
    Knyazev, S.P., and V.N. Tikhonov (1984) Gene mapping of the pig chromosome no. 16. Proceedings of the 6th European Colloquium on Cyto genetics of Domestic Animals, Zürich, pp. 395–399.Google Scholar
  32. 32.
    Lande, R. (1981) The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99:541–553.PubMedGoogle Scholar
  33. 33.
    Lax, T. (1971) Hereditary splayleg in pigs. J. Hered. 62:250–252.PubMedGoogle Scholar
  34. 34.
    Leong, M.M.L., C.C. Lin, and R.F. Ruth (1983) Assignment of superoxide dismutase (SOD-1) gene to chromosome no. 9 of domestic pig. Can. J. Genet. Cytol. 25:233–238.PubMedGoogle Scholar
  35. 35.
    Leong, M.M.L., C.C. Lin, and R.F. Ruth (1983) The localization of genes for HPRT, G6PD and -GAL onto the X-chromosome of domestic pig (sus scrofa domesticus). Can. J. Genet. Cytol. 25:239–245.PubMedGoogle Scholar
  36. 36.
    Littlefield, J.-W. (1964) Selection of hybrids from matings of fibro-blasts in vitro and their presumed recombinants. Nature (London) 256:495–497.Google Scholar
  37. 37.
    Mayr, B., D. Schweizer, and G. Geber (1984) NOR activity, hetero-chromatin differentiation, and the Robertsonian polymorphism in sus scrofa L. J. Hered. 75:79–80.PubMedGoogle Scholar
  38. 38.
    Miller, A.D., D.J. Jolly, T. Friedmann, and I.M. Verma (1983) A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): Gene transfer into cells obtained from humans deficient in HPRT. Proc. Natl. Acad. Sci., USA 80:4709–4713.PubMedCrossRefGoogle Scholar
  39. 39.
    Morton, C.C., I.R. Kirsch, R. Taub, S.H. Orkin, and J.A. Brown (1984) Localization of the ß-globin gene by chromosomal in situ hybridization. Am. J. Hum. Genet. 36:576–585.PubMedGoogle Scholar
  40. 40.
    Morton, N.E. (1955) Sequential tests for the detection of linkage. Am. J. Hum. Genet. 7:277–318.PubMedGoogle Scholar
  41. 41.
    Murray, J.M., K.E. Davies, P.S. Harper, L. Meredith, C.R. Mueller, and R. Williamson (1982) Linkage relationship of a cloned DNA sequence on the short arm of the X-chromosome to Duchenne muscular dystrophy. Nature (London) 300:69–71.PubMedCrossRefGoogle Scholar
  42. 42.
    O’Brien, S.J., ed. (1984) Genetic Maps, Vol. 3, National Institutes of Health, Bethesda, Maryland.Google Scholar
  43. 43.
    Paris Conference, 1971 (1972) Standardization in human cytogenetics. Cytogenet. Cell Genet. 11:313–362.Google Scholar
  44. 44.
    Pontecorvo, G. (1976) Production of mammalian somatic cell hybrids by means of polyethylene glycol (PEG) treatment. Somatic Cell Genet1:397–400.CrossRefGoogle Scholar
  45. 45.
    Rabin, M., R. Fries, D. Singer, and F.H. Ruddle (1985) Assignment of the porcine major histocompatibility complex to chromosome 7 by in situ hybridization. Cytogenet. Cell Genet. (in press).Google Scholar
  46. 46.
    Rabin, M., C.P. Hart, A. Ferguson-Smith, W. McGinnis, M. Levine, and F.H. Ruddle (1985) Two homeobox loci mapped in evolutionarily related mouse and human chromosomes. Nature (London) 313:175–178.CrossRefGoogle Scholar
  47. 47.
    Rasmusen, B.A. (1981) Linkage of genes for PHI, halothane sensitivity, A-0 inhibition, H red blood cell antigens, and 6-PGD variants in pigs. Anim. Blood Grps. Biochem. Genet. 12:207–209.CrossRefGoogle Scholar
  48. 48.
    Reading Conference, 1976 (1980) Proceedings of the first international conference for the standardisation of banded karyotypes of domestic animals. Hereditas 92:145–162.Google Scholar
  49. 49.
    Renwick, J.H. (1969) Progress in mapping human autosomes. Brit. Med. Bull. 25:65–73.PubMedGoogle Scholar
  50. 50.
    Ruddle, F.H. (1981) A new era in mammalian gene mapping: Somatic cell genetics and recombinant DNA methodologies. Nature (London) 294:115–120.PubMedCrossRefGoogle Scholar
  51. 51.
    Ruddle, F.H. (1984) The William Allan Memorial Award Address: Reverse genetics and beyond. Am. J. Hum. Genet. 36:944–953.PubMedGoogle Scholar
  52. 52.
    Seabright, M. (1971) A rapid banding technique for human chromosomes. Lancet 2:971.PubMedCrossRefGoogle Scholar
  53. 53.
    Skolnick, M.H., H.F. Willard, and L.A. Menlove (1984) Report of the committee on human gene mapping by recombinant DNA techniques. Cyto genet. Cell Genet. 37:210–273.CrossRefGoogle Scholar
  54. 54.
    Sumner, A.T. (1972) A simple technique for demonstrating centromeric heterochromatin. Exptl. Cell Res. 75:304–306.PubMedCrossRefGoogle Scholar
  55. 55.
    Tikhonov, V.N., I.G. Gorelov, S.V. Nikitin, V.E. Bobovich, and N.M. Astakhova (1983) Mapping of the locus for the H-blood group system on chromosome 15 of domestic pig. Doklady Akademii Nauk S.S.S.R. 272: 486–489.Google Scholar
  56. 56.
    Vögeli, P., G. Stranzinger, H. Schneebeli, C. Hagger, N. KUnzi, and C. Gerwig (1984) Relationships between the H and A-O blood types, phosphohexose isomerase and 6-phosphogluconate dehydrogenase red cell enzyme systems and halothane sensitivity, and economic traits in a superior and an inferior selection line of Swiss landrace pigs. J. Anim. Sci. 59:1440–1450.PubMedGoogle Scholar
  57. 57.
    Wald, A. (1947) Sequential Analysis, Dover Publications, Inc., New York, 212 pp.Google Scholar
  58. 58.
    Weiss, M.C., and H. Green (1967) Human-mouse hybrid cell lines con-taining partial complements of human chromosomes and functioning human genes. Proc. Natl. Acad. Sci., USA 58:1104–1111.PubMedCrossRefGoogle Scholar
  59. 59.
    White, R., M. Leppert, D.T. Bishop, D. Barker, J. Berkowitz, C. Brown, P. Callahan, T. Holm, and L. Jerominski (1985) Construction of linkage maps with DNA markers for human chromosomes. Nature (London) 313:101–105.PubMedCrossRefGoogle Scholar
  60. 60.
    Yerganian, G., and M.B. Nell (1966) Hybridization of dwarf hamster cells by UV-inactivated Sendai virus. Proc. Natl. Acad. Sci., USA55:1066–1073.PubMedCrossRefGoogle Scholar
  61. 61.
    Yoshida, M.C., T. Ikeuchi, and M. Sasaki (1975) Differential staining of parental chromosomes in interspecific cell hybrids with a combined quinacrine and 33258 Hoecht technique. Proc. Jap. Acad. 51:185–187.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Frank H. Ruddle
    • 1
  • Rudolf Fries
    • 1
  1. 1.Department of BiologyYale UniversityNew HavenUSA

Personalised recommendations