Introduction and Regulation of Cloned Genes for Agricultural Livestock Improvement

  • Thomas E. Wagner
Part of the Basic Life Sciences book series


The advent of gene transfer technology, which allows the introduction of well-characterized, cloned genes into the permanent genetic make-up of mammalian species, including laboratory mice (17,56) and domestic farm ani mals (20), holds the promise of providing a new methodology for the genetic improvement of livestock. Indeed, using these recombinant genetic procedures, greater genetic improvement may soon be achieved in a single generation of an animal than has previously been possible using classical genetic selection over a period of decades. But, in order to realize this promise, it will be necessary not only to introduce specific genes into the genetic composition of domestic animals but also to regulate the expression of these transgenes in concert with the existing physiological requirements of the animal.


Growth Hormone Transgenic Animal Mouse Mammary Tumor Virus Enhancer Element Growth Hormone Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banerji, J., L. Olson, and W. Schaffner (1983) A lymphocyte-specific cellular enhancer is located downstream of the joining region in im munoglobulin heavy chain genes.Cell33:729–740.PubMedCrossRefGoogle Scholar
  2. 2.
    Benoist, C., and P. Chambon (1981) In vivo sequence requirements of the SV40 early promotor region.Nature290(5804):304–310.PubMedCrossRefGoogle Scholar
  3. 3.
    Brinster, R., H. Chen, M. Trumbauer, A. Senear, R. Warren, and R. Palmiter (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs.Cell27:223–231.PubMedCrossRefGoogle Scholar
  4. 4.
    Brinster, R.L., H.Y. Chen, A. Messing, T. Van Dyke, A.J. Levine, and R.D. Palmiter (1984) Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors.Cell37:367–379.PubMedCrossRefGoogle Scholar
  5. 5.
    Caruthers, M.H., S.L. Beaucage, J.W. Efcavitch, E.F. Fisher, M.D. Matteucci, and Y. Stabinsky (1980) New chemical methods for synthesizing polynucleotides.Nucl. Acids Symp. Ser. 7:215–223.Google Scholar
  6. 6.
    Caruthers, M.H., S.L. Beaucage, J.W. Efcavitch, E.F. Fisher, R.A. Goldman, P.L. deHaseth, W. Mandecki, M.D. Matteucci, M.S. Rosendahl, and Y. Stabinsky (1982) Chemical synthesis and biological studies on mutated gene-control regions.Cold Spring Harbor Symp. Quant. Biol.47(part 1):411–418.CrossRefGoogle Scholar
  7. 7.
    Chada, K., J. Magram, K. Raphael, G. Radice, E. Lacy, and F. Constantini (1985) Specific expression of a foreign beta-globin gene in erythroid cells in transgenic mice.Nature314(6009):377–380.PubMedCrossRefGoogle Scholar
  8. 8.
    Chandler, V.L., B.A. Maler, K.Y. Yamamoto (1983) DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo.Cell33:489–499.PubMedCrossRefGoogle Scholar
  9. 9.
    Church, G.M., A. Ephrussi, W. Gilbert, and S. Tonegawa (1985) Cell-type-specific contacts to Ig enhancers in nuclei.Nature313:798.PubMedCrossRefGoogle Scholar
  10. 10.
    Constantini, F., and E. Lacey (1981) Introduction of a rabbit 3-globin gene into the mouse germ line.Nature294:92–94.CrossRefGoogle Scholar
  11. 11.
    Durnam, D.M., J.S. Hoffman, C.J. Quaiff, E.P. Benditt, H.Y. Chen, R.L. Brinster, and R.D. Palmiter (1984) Induction of mouse metallothionein-I mRNA by bacterial endotoxin is independent of metals and glucocorti coid hormones.Proc. Natl. Acad. Sci., USA81:1053–1056.PubMedCrossRefGoogle Scholar
  12. 12.
    Ephrussi, A., G.M. Church, S. Tonegawa, and W. Gilbert (1985) B lineage-Specific interactions of an immunoglobulin enhancer with cellular factors in vivo.Science227:134–140.PubMedCrossRefGoogle Scholar
  13. 13.
    Etherton, T.D., and R.S. Kensinger (1984) Endocrine regulation of fetal and postnatal meat animal growth.J. Anim. Sci. 59:511–517.PubMedGoogle Scholar
  14. 14.
    Evans, H.M., and M.E. Simpson (1931) Hormones of the anterior hypophysis.Am. J. Physiol. 98:511–546.Google Scholar
  15. 15.
    Fronk, T.M., T.J. Peel, D.E. Bauman, and R.C. Gorewit, (1983) Comparison of different patterns of exogenous growth hormone administration on milk production in Holstein cows.J. Anim. Sci. 57(3):699–705.PubMedGoogle Scholar
  16. 16.
    Gilles, S.D., S.L. Morrison, V.T. Oi, and S. Tonegawa (1983) A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobin heavy chain gene.Cell33:717.CrossRefGoogle Scholar
  17. 17.
    Gordon, J.W., G.A. Scangos, D.J. Plotkin, J.A. Barbosa, and F.H. Ruddle (1980) Genetic transformation of mouse embryos by microinjection of purified DNA.Proc. Natl. Acad. Sci., USA77(12):7380–7384.PubMedCrossRefGoogle Scholar
  18. 18.
    Grosschedl, R., D. Weaver, D. Baltimore, and F. Constantini (1984) Introduction of a mu immunoglobulin gene into the mouse germ line: Specific expression in lymphoid cells and synthesis of functional antibody.Cell38:647–658.CrossRefGoogle Scholar
  19. 19.
    Gruss, P., R. Dhar, and G. Khoury (1981) Simian virus 40 tandem repeated sequences as an element of the early promoter.Proc. Natl. Acad. Sci., USA78(2):943–947.PubMedCrossRefGoogle Scholar
  20. 20.
    Hammer, R.E., R.D. Palmiter, and R.L. Brinster (1984) Partial correction of murine hereditary growth disorder by germ-line incorporation of a new gene.Nature311 (5981):65–67.PubMedCrossRefGoogle Scholar
  21. 21.
    Hanahan, D. (1985) Heritable formation of pancreatic beta-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes.Nature315(6015):115–122.PubMedCrossRefGoogle Scholar
  22. 22.
    Karin, M., et al. (1984) Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene.Nature308:513–519.PubMedCrossRefGoogle Scholar
  23. 23.
    Katzenellenbogen, B.S., M.A. Miller, R.L. Eckert, and K. Sudo (1983) Antiestrogen pharmacology and mechanism of action.J. Steroid Bio chem. 19(lA):59–68.CrossRefGoogle Scholar
  24. 24.
    Khoury, G., and P. Gruss (1983) Enhancer elements. Cell 33:313–314.PubMedCrossRefGoogle Scholar
  25. 25.
    Krumlauf, J., R.E. Hammer, S.M. Tilghman, and R.L. Brinster (1985)Mol. Cell. Biol. (in press).Google Scholar
  26. 26.
    Lacy, E., S. Roberts, E.P. Evans, M.D. Burtenshaw, and F.D. Constantini (1983) A foreign beta-globin gene in transgenic mice: Integration at abnormal chromosomal positions and expression in inappropriate tissues.Cell34:343–358.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee, M.O., and N.K. Schaffer (1934) Anterior pituitary growth hormone and the composition of growth.J. Nutr. 7:337–363.Google Scholar
  28. 28.
    Machlin, L.J. (1972) Effect of porcine growth hormone on growth and carcass composition of the pig.J. Anim. Sci. 35:794–800.PubMedGoogle Scholar
  29. 29.
    Machlin, L.J. (1973) Effect of growth hormone on milk production and feed utilization in dairy cows.J. Dairy Sci. 56(5):575–580.PubMedCrossRefGoogle Scholar
  30. 30.
    McKnight, G.S., R.E. Hammer, E.A. Kuenzel, and R.L. Brinster (1983) Expression of the chicken transferrin gene in transgenic mice.Cell34:335–341.PubMedCrossRefGoogle Scholar
  31. 31.
    Majors, J., and H. Varmus (1983) A small region of the mouse mammary tumor virus long terminal repeat confers glucocorticoid hormone regu lation on a linked heterologous gene.Proc. Natl. Acad. Sci., USA80:5866–5870.PubMedCrossRefGoogle Scholar
  32. 32.
    Moore, D.D., A.R. Marks, D.I. Buckley, G. Kapler, F. Payvar, and H.M. Goodman (1985) The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor.Proc. Natl. Acad. Sci., USA82(3):699–702.PubMedCrossRefGoogle Scholar
  33. 33.
    O’Malley, B.W. (1984) Steroid hormone action in eukaryotic cells.J. Clin. nv. 74:307–312.Google Scholar
  34. 34.
    Ornitz, D.M., R.D. Palmiter, R.E. Hammer, R.L. Brinster, G.H. Swift, and R.J. MacDonald (1985) Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice.Nature313(6003):600–602.PubMedCrossRefGoogle Scholar
  35. 34a.
    Palmiter, R.D., and R.L. Brinster (1985) Transgenic mice.Cell41: 343–345.PubMedCrossRefGoogle Scholar
  36. 35.
    Palmiter, R.D., R.L. Brinster, R.E. Hammer, M.E. Trumbauer, M.G. Rosenfeld, N.C. Birnberg, and R.M. Evans (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes.Nature300:611–615.PubMedCrossRefGoogle Scholar
  37. 36.
    Palmiter, R.D., G. Norstedt, R.E. Gelinas, R.E. Hammer, and R.L. Brinster (1983) Metallothionein-human GH fusion genes stimulate growth of mice.Science222:809–814.PubMedCrossRefGoogle Scholar
  38. 37.
    Payvar, F., D. DeFranco, G.L. Firestone, B. Edgar, O. Wrange, S. Okert, J. Gustafsson, and K.R. Yamamoto (1983) Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region.Cell35:381–392.PubMedCrossRefGoogle Scholar
  39. 38.
    Peel, C.J., D.E. Bauman, R.C. Gorewit, and C.J. Sniffen (1981) Effect of exogenous growth hormone on lactational performance in high yielding dairy cows.J. Nutr. 111(9):1662–1667.PubMedGoogle Scholar
  40. 39.
    Peel, C.J., T.J. Fronk, D.E. Bauman, and R.C. Gorewit (1982) Lactational response to exogenous growth hormone and abomasal infusion of a glucose-sodium caseinate mixture in high-yielding dairy cows.J. Nutr. 112(9):1770–1778.PubMedGoogle Scholar
  41. 40.
    Peel, C.J., T.J. Fronk, D.E. Bauman, and R.C. Gorewit (1983) Effect of exogenous growth hormone in early and late lactation on lactational performance of dairy cows.J. Dairy Sci. 66(4):776–782.PubMedCrossRefGoogle Scholar
  42. 41.
    Queen, C., and D. Baltimore (1983) Immunoglobulin gene transcription is activated by downstream sequence elements.Cell33:741.PubMedCrossRefGoogle Scholar
  43. 42.
    Ritchie, K.A., R.L. Brinster, and U. Storb (1984) Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in kappa transgenic mice.Nature312:517–520.PubMedCrossRefGoogle Scholar
  44. 43.
    Rochefort, H., J.L. Borgna, and F. Evans (1983) Cellular and molecular mechanism of action of antiestrogens.J. Steroid Biochem. 19:69–74.PubMedCrossRefGoogle Scholar
  45. 44.
    Scheidereit, C., S. Geisse, H.M. Westphal, and M. Beato (1983) The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumor virus.Nature304:749–752.PubMedCrossRefGoogle Scholar
  46. 45.
    Seldon, R.F., T.E. Wagner, J.S. Yun, D.D. Moore, and H. Goodman (1985) Glucocorticoid regulation of human growth hormone expression in transgenic mice (submitted for publ.).Google Scholar
  47. 46.
    Shani, M. (1985) Tissue-specific expression of rat myosin light-chain 2 gene in transgenic mice.Nature314(6008):283–286.PubMedCrossRefGoogle Scholar
  48. 47.
    Stewart, T.A., E.F. Wagner, and B. Mintz (1982) Human ß-globin gene sequences injected into mouse eggs, retained in adults, and transmitted to progeny.Science217:1046–1048.CrossRefGoogle Scholar
  49. 48.
    Stewart, T.A, P.K. Pattengale, and P. Leder (1984) Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes.Cell38:627–637.PubMedCrossRefGoogle Scholar
  50. 49.
    Storb, U., R.L. O’Brien, M.D. McMullen, K.A. Gollahon, and R.L. Brinster (1984) High expression of cloned immunoglobulin kappa gene in transgenic mice is restricted to B lymphocytes.Nature310(5974): 238–241.PubMedCrossRefGoogle Scholar
  51. 50.
    Swift, G.H., R.E. Hammer, R.J. MacDonald, and R.L. Brinster (1984) Tissue-specific expression of the rat pancreatic elastase I gene in transgenic mice.Cell38:639–646.PubMedCrossRefGoogle Scholar
  52. 51.
    Tate, A.C., G.L. Greene, E.R. DeSoombre, E.V. Jensen, and V.C. Jordan (1984) Differences between estrogen-and antiestrogen-estrogen recep-tor complexes from human breast tumors identified with an antibody raised against the estrogen receptor.Cancer Res. 44:1012–1018.PubMedGoogle Scholar
  53. 52.
    Temin, H.M. (1982) Function of the retrovirus long terminal repeat.Cell28(l):3–5.PubMedCrossRefGoogle Scholar
  54. 53.
    Townes, T., L. Lingrel, H. Chen, R. Brinster, and R. Palmiter (1985) Erythroid specific expression of human ß-globin genes in transgenic mice.EMBO J. 4:1715–1724..PubMedGoogle Scholar
  55. 54.
    Wagner, T.E. (1985) The role of gene transfer in animal agriculture and technology.Can. J. Anim. Sci. (in press).Google Scholar
  56. 55.
    Wagner, T.E., and W. Jochle (1985) Recombinant gene transfer in animals: The potential for improving growth in livestock. InControl and Manipulation of Animal Growth, P.J. Buttery, ed. Butterworths, London (in press).Google Scholar
  57. 56.
    Wagner, E., T. Stewart, and B. Mintz (1981) The human ß-globin gene and a functional viral thymidine kinase gene in developing mice.Proc. Natl. Acad. Sci., USA78:5016–5020.PubMedCrossRefGoogle Scholar
  58. 57.
    Wagner, T., P. Hoppe, J. Jollick, D. Scholl, R. Hodinka, and J. Gault (1981) Microinjection of a rabbit ß-globin gene into zygotes and its subsequent expression in adult mice and their offspring.Proc. Natl. Acad. Sci., USA78:6376–6380.PubMedCrossRefGoogle Scholar
  59. 58.
    Wagner, T.E., F.A. Murray, B. Minhas, and D.C. Kraemer (1984) The possibility of transgenic livestock.Theriogenology21:29–44.CrossRefGoogle Scholar
  60. 59.
    Wakeling, A.E., B. Valcaccia, E. Newbolilt, and L.R. Green (1984) Non-steroidal antiestrogens-Receptor binding and biological response in rat uterus, rat mammary carcinoma and human breast cancer cells.J. Steroid Biochem. 20:111–120.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Thomas E. Wagner
    • 1
  1. 1.Edison Animal Biotechnology CenterOhio UniversityAthensUSA

Personalised recommendations