Hormonal Regulation of Creatine Kinase BB

  • Alvin M. Kaye
  • Nachum A. Reiss
  • Yosef Weisman
  • Itzhak Binderman
  • Dalia Sömjen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


The induction of increased synthesis of creatine kinase BB (EC now appears to be a response produced by a variety of hormones. The list includes steroid and polypeptide hormones, prostaglandin E2, bone derived growth factor, and dibutyryl cAMP. This survey is the first summary of the breadth of the phenomenon and will concentrate on examples from work which is still in press or is yet unpublished.


Growth Hormone Creatine Kinase Luteinizing Hormone Release Hormone Dibutyryl cAMP Luteinizing Hormone Release Hormone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amroch, D., Cox, S., Shaer, A., Malnick, S., Chatsubi, S., Hallow-es, R., and Kaye, A.M., 1984, Estrogen responsive creatine kinase in normal and neoplastic human breast, in: “Fbrmones and Cancer”, Vol. 2, F. Bresciani, R.J.B. King, M. Lippman and J.P. Raynaud, eds., Raven Press, N.Y. in press.Google Scholar
  2. Austin, L.A., and Heath, H.III, 1981, Calcitonin: physiology and pathophysiology, N. Eng. J. Med. 304: 269.CrossRefGoogle Scholar
  3. Bachrach, U., 1984, Physiological aspects of ornithine decarboxylase, Cell Biochem. and Function, 2: 6.CrossRefGoogle Scholar
  4. Barnea, A., and Gorski, J., 1970, Estrogen-induced protein. Time course of synthesis, Biochemistry, 9: 1899.Google Scholar
  5. Binderman, I., and Sömjen, D., 1984, 24R,25 dihydroxycholecalciferol induces the growth of chick cartilage cells in vitro. Endocrinology, (in press).Google Scholar
  6. Binderman, I., Duksin, D., Harell, A., Katchalsky, E., and Sachs, L., 1974, Formation of bone tissue in culture from isolated bone cells. J. Cell. Biol. 61: 427.PubMedCrossRefGoogle Scholar
  7. Binderman, I., Greene, R.M., and Pennypacker, J.P., 1979, Calcification of differentiating skeletal mesenchyme in vitro. Science, 206: 222.PubMedCrossRefGoogle Scholar
  8. Binderman, I., Semjen, D., Shimshoni, Z., and Harell, A., 1982, The role of prostaglandins (PGE) in mechanically induced bone re-modelling, in: “Osteoporosis”, J. Menczel, G.R. Robin and M. Maikin, eds., Wiley and Sons, London, pp. 195.Google Scholar
  9. Clayton, R.H., and Catt, K.J., 1981, Gonadotropin-releasing hormone receptors: characterization, physiological regulation and relationship to reproductive function. Endocrine Revs. 2: 186.CrossRefGoogle Scholar
  10. Colston, K.W., and Feldman, D., 1979, Demonstration of a 1,25-dihydroxycholecalciferol cytoplasmic receptor-like binder. J. Clin. Endocrinol. Metab, 49: 798.PubMedCrossRefGoogle Scholar
  11. Corvol, M.T., Dumontier, M.F., Garabedian, M., and Rappaport, R., 1978, Vitamin D and cartilage. II. Biological activity of 25-hydroxycholecalciferol and 24,25,- and 1,25-dihydroxycholecalciferols on cultured growth plate chondrocytes, Endocrinology, 102: 1269.CrossRefGoogle Scholar
  12. Corvol, M., Ulmann, A., and Garabedian, M., 1980, Specific nuclear uptake of 24,25-dihydroxycholecalciferol, a vitamin D metabo-lite biologically active in cartilage, FEBS Lett. 116: 273.PubMedCrossRefGoogle Scholar
  13. Degani, H., Shaer, A., Victor, T.A., and Kaye, A.M., 1984, Estrogen-induced changes in high-energy phosphate metabolism in rat uterus:’’ P NMR studies. Biochemistry, In press.Google Scholar
  14. DeLuca, M., Hall, N., Rice, R. and Kaplan, N.O., 1981, Creatine kinase isozymes in human tumors, Biochem. Biophys. Res. Commun. 99: 189.PubMedCrossRefGoogle Scholar
  15. Eden, S., Isaksson, O.G.P., Madsen, K., and Friberg, U., 1983, Specific binding of growth hormone to isolated chondrocytes from rabbit ear and epiphyseal plate. Endocrinology 112: 1983.CrossRefGoogle Scholar
  16. Emtage, J.S., Lawson, D.E.M., and Kodicek, E., 1974, The response of the small intestine to vitamin D. Correlation between calcium-binding-protein production and increased calcium absorption, Biochem. J., 144: 339.PubMedGoogle Scholar
  17. Farley, J.R., Wergedal, J.E., and Baylink, D.J., 1983, Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells, Science, 222: 330.PubMedCrossRefGoogle Scholar
  18. Fleckiger, E., del Bozo, E., and von Werder, K., 1932, Prolactin: physiology, pharmacology and clinical findings, Monogr. Endocrinol., 23: 1.Google Scholar
  19. Gluckman, P.D., Grunbach, M.M., and Kaplan, S.M., 1931, The neuroendocrine regulation and function of growth hormone and prolactin in the mammalian fetus, Endocr. Revs., 2: 363.CrossRefGoogle Scholar
  20. Hurley, T.W., Thadani, P., Kuhn, C.M., Schanberg, S.M., and Handwerger, S., 1980, Differential effects of placental lactogen, growth hormone and prolactin on rat liver ornithine decarboxylase activity in the perinatal period. Life Sci. 27: 2269.PubMedCrossRefGoogle Scholar
  21. Isaksson, O.G.P., Janssen, J.-O. and Gause, I.A.M., 1932, Growth hormone stimulates longitudinal bone growth directly. Science 216: 1237.Google Scholar
  22. Katzenellenbogen, B.S., and Gorski, J., 1972, Estrogen action in vitro. J. Biol. Chem., 247: 1299.Google Scholar
  23. Kaye, A.M., Reiss, N., Shaer, A., Sluyser, M., Iacobelli, S., Amroch, D., and Soffer, Y., 1981, Estrogen responsive creatine kinase in normal and neoplastic cells, J. Steroid Biochem., 15: 69.PubMedCrossRefGoogle Scholar
  24. Kaye, A.M., 1983a, Sequential regulation of gene expression by estrogen in the developing rat uterus, in: “Regulation of Gene Expression by Hormones”, K.W. McKerns, ed., Plenum Pub. Co., N.Y., p. 103.Google Scholar
  25. Kaye, A.M., 1983b, Enzyme induction by estrogen, J. Steroid. Biochem. 19: 33.Google Scholar
  26. Kenyon, G.L., and Reed, G.H., 1983, Creatine kinase: structure-activity relationships, Adv. Enz., 54: 367.Google Scholar
  27. Kimhi, Y., 1981, Nerve cells in clonal systems, in: “Excitable Cells in Tissue Culture”, P.G. Nelson and M. Lieberman, Plenum Press, N.Y., p. 173–245.Google Scholar
  28. Li, C.H., 1982, Human growth hormone: 1974–1981, Mol. Cell. Biochem. 46: 31.Google Scholar
  29. Majeska, R.J., and Rodan, G., 1932, The effect of 1,25(OH)2D on alkaline phosphatase in osteoblastic osteosarcoma cells; J. Biol. Chem., 257: 3362.Google Scholar
  30. Malnick, S.D.H., Shaer, A., Soreq, H. and Kaye, A.M., 1983, Estrogen-induced creatine kinase in the reproductive system of the immature female rat, Endocrinology, 113: 1909.CrossRefGoogle Scholar
  31. Meyer, I.J., Thompson, J.A., Kiser, E.J., and Haven, G.T., 1980, Observation of a variant creatine kinase isoenzyme in sera and breast tumor cytosols. Am. J. Clin. Path., 74: 332.PubMedGoogle Scholar
  32. Nicklas, W., and Browning, E.T., 1983, Glutamate uptake and metabolism in C-6 glioma cells: alterations by potassium ion and dibutyryl cAMP. J. Neurochem. 41: 179.PubMedCrossRefGoogle Scholar
  33. Norman, A.W., Roth, J., and Orci, L., 1982, The vitamin D endocrine system: Steroid metabolism, hormone recep`-ors, and biological response (calcium binding proteins), Endocr. Revs., 3: 331.CrossRefGoogle Scholar
  34. Notides, A., and Gorski, J., 1966, Estrogen-induced synthesis of a specific uterine protein, Proc. Natn. Acad. Sci. U.S.A., 56: 230.CrossRefGoogle Scholar
  35. Ornoy, A., Goodwin, D., Noff, D., and Edelstein, S., 1978, 24,25-Dihydroxy vitamin D is a metabolite of vitamin D essential for bone formation, Nature, 276:517.Google Scholar
  36. Rasmussen, H., De Luca, H.F., Arnaud, C., Hawker, C., and von Steding, K.M., 1963, The relationship between vitamin D and parathyroid hormone, J. Clin. Invest., 42: 1940.PubMedCrossRefGoogle Scholar
  37. Reiss, N.A., and Kaye, A.M., 1981, Identification of the major component of the estrogen induced protein of rat uterus as the BB isozyme of creatine kinase, J. Biol. Chem., 256: 5741.PubMedGoogle Scholar
  38. Russell, D.H., 1980, Ornithine décarboxylase as a biological and pharmacological tool, Pharmacology, 20: 117.PubMedCrossRefGoogle Scholar
  39. Shatton, J.B., Morris, H.D., and Weinhouse, S., 1979, Creatine kinase activity and isozyme composition in normal tissues and neoplasms of rats and mice, Cancer Research, 39: 492.PubMedGoogle Scholar
  40. Shinki, T., Takahashi, N., Miyaura, C., Samejima, K., Nishii, Y., and Suda, T., 1931, Ornithine decarboxylase activity in chick duodenum induced by 1x,25-dihydroxycholecalciferol, Biochem. J., 195: 685.Google Scholar
  41. Sömjen, D., Binderman, I., Harell, A., and Weismann, Y., 1932a, Biologic action of 24,25(OH) OD: Induction of growth in devel-oping skeletal tissue, in: “’Ctjrrent Advances in Skeletogenesis: Development, Biomineralization, Mediators and Metabolic Bone Disease”, Excerpta Medica, Amsterdam, p. 185.Google Scholar
  42. Sömjen, D., Sömjen, G.J., Harell, A., Mechanic, G.L., and Binderman, I., 1932b, Partial characterization of a specific high affinity binding macromolecule for 24R,25 dihydroxyvitamin D3 in differentiating skeletal mesenchyme, Biochem. Biophys. Res. Commun. 106: 644.CrossRefGoogle Scholar
  43. Sömjen, D., Korenstein, R., Fischler, H., and Binderman, I., 1932e, Effects of intensity of electric field on the response of cultured bone cells to parathyroid hormone and prostaglandin E2, in: “Current Advances in Skeletogenesis: Development, Biomineralization, Mediators and Metabolic Bone Disease”, Excerpta Medica, Amsterdam, p. 412.Google Scholar
  44. Sömjen, D., Binderman, I., and Weisman, Y., 1983, The effects of 24R,25 dihydroxycholecalciferol and of 1a,25 dihydroxycholecalciferol on ornithine decarboxylase activity and on DNA synthesis in the epiphysis and diiphysis of rat bone and in the duodenum, Biochem. J., 214: 293.Google Scholar
  45. Sömjen, D., Kaye, A.M., and Binderman, I., 1934a, 24R,25-dihydroxy vitamin D stimulates creatine kinase BB activity in chick cartilage cells in culture, FEBS Lett. 167:281.Google Scholar
  46. Sömjen, D., Weisman, Y., Binderman, I., and Kaye, A.M., 1934b, Stimulation of creatine kinase BB activity by 1a,25-dihydroxycholecalciferol and 24R,25-dihydroxycholecalciferol in rat tissues, Biochem. J., (in press).Google Scholar
  47. Sömjen, D., Kaye, A.M., and Binderman, I., 1934c, Hormonal regulation of creatine kinase in normal and transformed bone cells, in: “Proc. 6th Int. Workshop Calcified Tissues”, Kiryat Anavim, A. Ornoy, ed., Elsevier, Amsterdam, In press.Google Scholar
  48. Tsai, H.C., and Norman, A.W., 1973, Studies on calciferol metabolism. VIII. Evidence for a cytoplasmic receptor for 1,25-dihydroxy-vitamin D in the intestinal mucosa, J. Biol. Chem. 248: 5957.Google Scholar
  49. Varner, M.W., and Hauser, K.S., 1981, Current status of human placental lactogen, Semin. Perinatol. 5: 123.PubMedGoogle Scholar
  50. Walker, M.D., and Kaye, A.M., 1981, mRNA for the rat uterine estrogen induced protein: translation in vitro and regulation by estrogen, J. Biol. Chem., 256: 23.PubMedGoogle Scholar
  51. Watts, D.S., 1973, Creatine kinase (adenosine 5’ triphosphate-creatine phosphotransferase),in: “The Enzymes”, P.D. Boyer, ed., vol. 8, part 2, p. 333, Academic Press, N.Y.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Alvin M. Kaye
    • 1
  • Nachum A. Reiss
    • 2
  • Yosef Weisman
    • 3
  • Itzhak Binderman
    • 4
  • Dalia Sömjen
    • 4
  1. 1.Departments of Hormone ResearchThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Departments of Chemical ImmunologyThe Weizmann Institute of ScienceRehovotIsrael
  3. 3.Vitamin Research Laboratory, Ichilov Hospital, Tel-Aviv Medical Center Sackler School of MedicineUniversity of Tel-AvivTel-AvivIsrael
  4. 4.The Hard Tissues Unit, Ichilov Hospital, Tel-Aviv Medical Center Sackler School of MedicineUniversity of Tel-AvivTel-AvivIsrael

Personalised recommendations