Ca++-Dependent and Ca++-Independent Effects of Mg++ on Canine Right Atria

  • W. T. WoodsJr.
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


Mg++ and Ca++, the divalent cations that exist in highest concentrations in biological fluids, interact with cardiac cell membranes by binding to them or by crossing them through carriers or channels. Binding and transmembrane movement of Ca++ directly affect electrogenesis and contractility in cardiac cells. Mg++ has been thought to act less directly on electromechanical function by facilitating active transport or competing with Ca++ and other cations for membrane binding sites.


Sinus Node Sinus Rate Atrial Contraction Develop Tension Membrane Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bers, D. M., and Langer, G. A., 1979, Uncoupling cation effects on cardiac contractility and sarcolemmal Ca2+ binding, Amer. J. of Physiol. 237 (3): H332 - H341.Google Scholar
  2. Chesnais, J. M., Coraboeuf, E., Sauviat, M. P., and Vassas, J. M., 1971, Inhibition par les ions magnesium de la conductance sodique lente apparaissant sous l’effet de depolarisations membranaires au niveau des fibres atriales de Grenouille, C. R. Acad. Sc. Paris, 273: 1594–1597.Google Scholar
  3. Chesnais, J. M, Coraboeuf, E., Sauviat, M. P., and Vassas, J. M., 1975, Sensitivity to H, Li and Mg ions of the slow inward sodium current in frog atrial fibres, J. Molec. Cell. Cardiol., 7: 627–642.CrossRefGoogle Scholar
  4. Polimeni, P. I., and Page, E., 1974, Further observations on magnesium transport in rat ventricular muscle, Recent Advances in Studies on Cardiac Structure and Metabolism, 4 (Myocardial Biology): 217–232.PubMedGoogle Scholar
  5. Pappano, A. J., 1970, Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by potassium, Circ. Res., 27: 379–390.PubMedGoogle Scholar
  6. Pappano, A. J., and Sperelakis, N., 1969, Spike electrogenesis in cultured heart cells, Amer. J. of Physiol., 217: 615–624.Google Scholar
  7. Rich, T. L., and Langer, G. A., 1982, Calcium depletion in rabbit myocardium, Circ. Res., 51: 131–141.PubMedGoogle Scholar
  8. Woods, W. T., Katholi, R. E., Urthaler, F., and James, T. N., 1979, Electrophysiological effects of magnesium on cells in the canine sinus node and false tendon, Circ. Res., 44: 182–188.PubMedGoogle Scholar
  9. Woods, W. T., Urthaler, F., and James, T. N., 1976, Spontaneous action potentials of cells in the canine sinus node, Circ. Res., 39: 76–82.PubMedGoogle Scholar
  10. Woods, W. T., Urthaler, F., and James, T. N., 1978, Progressive postnatal changes in sinus node response to atropine and propranolol, Amer. J. of Physiol., 234: H412 - H415.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • W. T. WoodsJr.
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Alabama in BirminghamBirminghamUK

Personalised recommendations