Calcium Compartmentation and Regulation in Myocytes

  • John R. Williamson
  • Andrew P. Thomas
  • Rebecca J. Williams
  • Janette Alexander
  • Mary A. Selak
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


The cytosolic free Ca2+ concentration of isolated rat myocytes that were resistant to addition of external Ca2+ (Ca2+-tolerant) has been measured by two independent methods, the null point titration technique and by use of Quin 2 as an intracellular Ca2+ probe. Values obtained for quiescent cells were in the range of 170 to 270 nM. Using Quin 2-Ca2+ fluorescence to monitor changes of cytosolic free Ca2+ ([Ca2+]i) in the presence of 0.65 mM external Ca2+, separate additions of the Ca2+ ionophore ionomycin, the mitochondrial uncoupling agent 1799 or the respiratory inhibitor KCN each caused an increase of [Ca2+]i of about 3-fold. The Quin 2 loaded myocytes responded to electrical stimulation by a transient increase of [Ca2+]i, which peaked about 75% above the resting level. The rise of [Ca2+]i was complete within 50 ms and declined gradually to the resting level. The β-agonist isoproterenol caused up to a 100% increase in the amplitude of the Quin 2-Ca2+ fluorescence change, with a half maximal effect at 130 µM. The stimulation-induced [Ca2+]i transient was abolished by addition of 100 µM propanolol after 10 µM isoproterenol.

The distribution of calcium within the myocyte was measured by addition of the mitochondrial uncoupling agent FCCP to release mitochondrial calcium followed by the Ca2+ ionophore A23187 to release calcium from other vesicular pools, using arsenazo III as an extracellular Ca2+ indicator. Over the range of total releasable cell calcium from 0.5 to 4.5 nmol/mg cell dry weight, the ratio of the distribution of mitochondrial to sarcoplasmic reticulum was approximately constant at 1:2. The role of mitochondria in regulating and buffering cytosolic free Ca2+ and possible regulation of mitochondrial Ca2+-dependent dehydrogenases by the intramitochondrial free Ca2+ during the cardiac contraction cycle is discussed.


Pyruvate Dehydrogenase Heart Mitochondrion Positive Inotropic Agent Ionophore Ionomycin Pyruvate Dehydrogenase Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Blinks, W. G. Wier, P. Hess, and F. G. Prendergast, Measurement of Ca2+ concentrations in living cells, Progr. Biophys. Molec. Biol. 40: 1–114 (1982).CrossRefGoogle Scholar
  2. 2.
    R. Y. Tsien, Intracellular measurements of ion activation, Ann. Rev. Biophys. Bioeng. 12: 91–116 (1983).CrossRefGoogle Scholar
  3. 3.
    R. Y. Tsien, New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis and properties of prototype structures, Biochemistry 19: 2396–2404 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Y. Tsien, A non-disruptive technique for loading calcium buffers and indicators into cells, Nature 290: 527–528 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Y. Tsien, T. Pozzan, and R. J. Rink, Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator, J. Cell. Biol. 94: 325–334 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    A. P. Thomas, Alexander, J. and J. R. Williamson, Relationship between inositol polyphosphate production and the increase of cytosolic free Cat+ induced by vasopressin in isolated hepatocytes, J. Biol. Chem., in press.Google Scholar
  7. 7.
    R. Charest, P. F. Blackmore, B. Berthon, and J. H. Exton, Changes in free cytosolic Ca2+ in hepatocytes following aadrenergic stimulation. Studies on Quin 2-loaded hepatocytes, J. Biol. Chem. 258: 8769–8773 (1983).PubMedGoogle Scholar
  8. 8.
    J. R. Williamson, R. J. Williams, K. E. Coll, and A. P. Thomas, Cytosolic free Ca2+ concentration and intracellular calcium distribution of Ca2+-tolerant isolated heart cells, J. Biol. Chem. 258: 13411–13414 (1983).PubMedGoogle Scholar
  9. 9.
    E. Murphy, K. E. Coll, T. L. Rich, and J. R. Williamson, Hormonal effects on calcium homeostasis in isolated hepatocytes. J. Biol. Chem. 255: 6600–6608 (1980).PubMedGoogle Scholar
  10. 10.
    S. K. Joseph, K. E. Coll, R. H. Cooper, J. S. Marks, and J. R Williamson, Mechanisms underlying calcium homeostasis in isolated hepatocytes, J. Biol. Chem. 258: 731–741 (1983).PubMedGoogle Scholar
  11. 11.
    K. E. Coll, S. K. Joseph, B. E. Corkey and J. R. Williamson, Determination of the matrix free CaL+ concentration and kinetics of Ca2+ in liver and heart mitochondria, J. Biol. Chem. 257: 8696–8704 (1982).PubMedGoogle Scholar
  12. 12.
    W. R. Kukovetz, M. E. Hess, J. Shanfeld, and N. Haugaard, The action of sympathomimetic amines on isometric contraction and phosphorylase activity of the isolated rat heart, J. Pharmacol. Exp. Therap. 127: 122–127 (1959).Google Scholar
  13. 13.
    W. R. Ingebretsen, W. F. Friedman, and S. E. Mayer, Isoproterenolinduced restoration of contraction in K+depolarized hearts: relationship to cAMP, Am. J. Physiol. 241: H187 - H193 (1981).PubMedGoogle Scholar
  14. 14.
    K. Hermsmeyer, R. Mason, S. H. Griffen, and P. Becker, Rat cardiac muscle single cell automaticity responses to a and ßadrenergic agonists and antagonists, Circ. Res. 51: 532–537Google Scholar
  15. 15.
    J. E. Holl, Selective additive effect of phenylephrine to the inotropic action of isoproterenol on rabbit left atria, Naunyn-Schmiedeberg’s Arch. Pharmacol. 318: 336–339 (1982).CrossRefGoogle Scholar
  16. 16.
    D. G. Allen and J. R. Blinks, Calcium transients in aequorin injected frog cardiac muscle, Nature 273: 509–513 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    W. G. Wier, Calcium transients during excitation-contraction coupling in mammalian heart: aequorin signals of canine purkinje fibers, Science 207: 1085–1087.Google Scholar
  18. 18.
    J. P. Morgan and J. R. Blinks, Intracellular Ca2+ transients in the cat papillary muscle, Can. J. Physiol. Pharmacol. 60: 524–528 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Kurihara and D. G. Allen, Intracellular Ca2+ transients and relaxation in mammalian cardiac muscle, Japn. Circ. J. 46: 39–43.Google Scholar
  20. 20.
    D. G. Allen and S. Kurihara, The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle, J. Physiol. 327: 79–94 (1982).PubMedGoogle Scholar
  21. 21.
    W. G. Wier and G. Isenberg, Intracellular [Ca2+] transients in voltage clamped cardiac purkinje fibers, Pflügers Arch. 392: 284–290 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    Eisner, D. A., C. H. Orchard, and D. G. Allen, Control of intracellular ionized calcium concentration by sarcolemmal and intracellular mechanisms, J. Mol. Cell. Cardiol. 16: 137–146 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    R. W. Tsien, Cyclic AMP and contractive activity in the heart, Adv. Cyclic Nucleotide Res. 8: 363–420 (1977).PubMedGoogle Scholar
  24. 24.
    R. M. Denton and J. G. McCormack, On the role of calcium transport cycle in heart and other mammalian mitochondria, FEBS. Lett. 119: 1–8.Google Scholar
  25. 25.
    R. M. Denton, D. A. Richards and J. G. Chin, Calcium ions and the regulation of NAD+ linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues, Biochem. J. 176: 899–906.Google Scholar
  26. 26.
    R. M. Denton, J. G. McCormack, and N. J. Edgell, Role of calcium ions in the regulation of intramitochondrial metabolism, Biochem. J. 190: 107–117.Google Scholar
  27. 27.
    J. G. McCormack and R. M. Denton, The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex, Biochem. J. 180: 533–544 (1979).PubMedGoogle Scholar
  28. 28.
    J. G. McCormack and R. M. Denton, Role of calcium ions in the regulation of intramitochondrial metabolism, Biochem. J. 190: 95–105 (1980).PubMedGoogle Scholar
  29. 29.
    J. G. McCormack and R. M. Denton, The activation of pyruvate dehydrogenase in the perfused rat heart by adrenaline and other inotropic agents, Biochem. J. 194: 639–643 (1981).PubMedGoogle Scholar
  30. 30.
    J. G. McCormack and R. M. Denton, Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart, Biochem. J. 218: 235–247 (1984).PubMedGoogle Scholar
  31. 31.
    R. M. Denton, P. J. Randle, and B. R. Martin, Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase, Biochem. J. 128: 161–163 (1972).PubMedGoogle Scholar
  32. 32.
    M. Crompton, P. Kessar and I. Al-Nasser, The a-adrenergic-mediated activation of the cardiac mitochondrial Ca2+ uniporter and its role in the control of intramitochondrial Ca2+ in vivo, Biochem. J. 216: 333–342 (1983).PubMedGoogle Scholar
  33. 33.
    P. Kessar and M. Crompton, The sequestration of Ca2+ by mitochondria in rat heart cells, Cell Calcium 4: 295–305 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    T. Hiraoka, M. Debuysere, and M. S. Olson, Studies of the effects of ß-adrenergic agonists on the regulation of pyruvate dehydrogenase in the perfused rat heart, J. Biol. Chem. 255: 7604–7609 (1980).PubMedGoogle Scholar
  35. 35.
    J. G. McCormack and P. J. England, Ruthenium red inhibits the activation of pyruvate dehydrogenase caused by positive isotropic agents in the perfused rat heart, Biochem. J. 214: 581–585 (1983).PubMedGoogle Scholar
  36. 36.
    J. R. Williamson and R. H. Cooper, Regulation of the citric acid cycle in mammalian systems, FEBS Lett. 117: K73 - K92 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    P. J. Randle, Phosphorylation-dephosphorylation cycles and the regulation of fuel selection in mammals, Curr. Topics Cell. Regul. 18: 108–129 (1981).Google Scholar
  38. 38.
    J. R. Williamson, Mitochondrial function in the heart, Ann. Rev. Physiol. 41: 485–506 (1979).CrossRefGoogle Scholar
  39. 39.
    R. G. Hansford, Control of mitochondrial substrate oxidation, Curr. Topics Bioenerg. 10: 217–278 (1980).Google Scholar
  40. 40.
    P. J. Randle and P. K. Tubbs, Carbohydrate and fatty acid metabolism, in: “Handbook of Physiology”,Section 2, The Cardiovascular System, R. M. Berne, ed., Am. Physiol. Soc., Bethesda (1979).Google Scholar
  41. 41.
    R. C. Hansford and F. Castro, Effects of micromolar concentrations of free calcium ions in the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate, Biochem. J. 198: 522–533 (1981).Google Scholar
  42. 42.
    R. G. Hansford and F. Castro, Intramitochondrial and extramitochondrial free calcium ion concentrations with very low plausibly physiological, contents of total calcium, J. Bioenerg. Biomembr. 14: 361–376 (1982).Google Scholar
  43. 43.
    T. Kitazawa, Physiological significance of Ca uptake by mitochondria in the heart in comparison with that by cardiac sarcoplasmic reticulum, J. Biochem. (Tokyo) 80: 1129–1147 (1976).Google Scholar
  44. 44.
    S. P. Robertson, J. P. Potter and W. Rouslin, The Ca2+ and Mgt+ dependence of Ca2+ uptake and respiratory function of porcine heart mitochondria, J. Biol. Chem. 257: 1743–1748 (1982).PubMedGoogle Scholar
  45. 45.
    C. V. Nicchitta and J. R. Williamson, Spermine: A regulator of mitochondrial calcium cycling, J. Biol. Chem., in press.Google Scholar
  46. 46.
    D. G. Nicholls and K. Âkerman, Mitochondrial calcium transport, Biochim. Biophys. Acta 683: 57–88 (1982).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John R. Williamson
    • 1
  • Andrew P. Thomas
    • 1
  • Rebecca J. Williams
    • 1
  • Janette Alexander
    • 1
  • Mary A. Selak
    • 1
  1. 1.Dept. of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations