Advertisement

Isozymes of Creatine Kinase in Mammalian Myocardial Cell Culture

  • Maria W. Seraydarian
  • Takenori Yamada
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)

Abstract

The high resting metabolism of the myocardium, a precise coupling of energy production to energy utilization and an efficient access to the available energy in the process of contraction are the functional characteristics of adult myocardium. The mechanisms which subserve these parameters are investigated.

Keywords

Creatine Kinase Myocardial Cell Mitochondrial Creatine Kinase Total Creatine Kinase Creatine Kinase Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bessman, S.P., and Fonyo, A. (1966) The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration. Biochem. Biophys. Commun., 22: 597–602.Google Scholar
  2. Burns, A.H. and Reddy, W.J. (1978) Amino acid stimulation of oxygen and substrate utilization by cardiac myocytes. Am. J. Physiol., 235: E461 - E466.PubMedGoogle Scholar
  3. Gibbs, C.L. Cardiac energetics. (1978) Physiol. Rev. 58: 174–254.PubMedGoogle Scholar
  4. Hall, N., and DeLuca, M. (1975) Developmental changes in creatine phosphokinase isoenzymes in neonatal mouse hearts. Biochem. Biophys. Res. Commun., 66: 988–994.Google Scholar
  5. Harary, I., and Farley, B. (1963) In vitro studies of beating heart cells in culture. I. Growth and organization. Exp. Cell Res., 29: 451–465.Google Scholar
  6. Jacobs, M., Heldt, H.W. and Klingenberg, M. (1964) High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem. Biophys. Res Commun. 16: 516–521.Google Scholar
  7. Jacobus, W.E. and Ingwal.l, J.S., eds. (1980) Heart Creatine Kinase. The Integration of Isozymes for Energy Distribution. Baltimore, Williams & Williams.Google Scholar
  8. Jacobus, W.E. and Lehninger, A.L. (1973) Creatine kinase of rat heart mitochondria. J. Biol. Chem., 248: 4803–4810.Google Scholar
  9. Langer, G.A. (1973) Heart: Excitation-contraction coupling. Ann. Rev. Physiol. 35, 55–86.Google Scholar
  10. Lompré, A.M., Mercadier, J.J., Wisnewsky, C., Bouveret, P., Pantaloni, C., D’Albis, A., and Schwartz, K. (1981) Species and age-dependent changes in the relative amounts of cardiac myosin isozymes in mammals. Dev. Biol., 84: 286–290.Google Scholar
  11. Lowry, 0.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J.Biol. Chem. 193: 265–275.Google Scholar
  12. Marsh, J.D. (1983) The cultured heart cell: A useful model for physiological and biochemical investigation. Int. J. Cardiol. 3: 465–468.Google Scholar
  13. McClellan, G., Weisberg, A., and Winegrad, S. (1983) Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells. Am. J. Physiol., 245: C423 - C427.PubMedGoogle Scholar
  14. Merlie, J.P., Buckingham, M.E., and Whalen, R.G. (1977) Molecular aspects of myogenesis. Current Topics Dev. Biol., 11: 61–114.Google Scholar
  15. Miranda, A.F., Somer, H., and Dimauro, S. (1979) Isoenzyme as markers of differentiation. In: Muscle Regeneration. A. Mauro, R. Bischoff, B. Carlson, S. Shafiq, I. Konigsberg, and B. Lipton, eds. New York, Raven Press, pp. 453–473.Google Scholar
  16. Nielsen, L., and Ludvigsen, B. (1963) Improved method for determination of creatine kinase. J. Lab. Clin. Med., 62: 159–169.Google Scholar
  17. Saks, V.A., Chernousova, G.B., Voronkov, U.I., Smirnov, V.N., and Chazov, E.I. (1974) Study of energy transport mechanism in myocardial cells. Circ. Res., 34–35 ( Suppl. III ): 138–149.Google Scholar
  18. Seraydarian, M.W., and Abbott, B.C. (1976) The role of the creatine-phosphocreatine system in muscle. J. Mol. Cell Cardiol., 8: 741–746.Google Scholar
  19. Seraydarian, M.W., and Artaza, L. (1976) Regulation of energy metabolism by creatine in cardiac and skeletal muscle cells in culture. J. Mol. Cell. Cardiol., 8: 669–678.Google Scholar
  20. Seraydarian, M.W., Artaza, L., and Abbott, B.C. (1974) Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture. J. Mol. Cell. Cardiol., 6: 405–413.Google Scholar
  21. Shainberg, A., Yagil, G., and Yaffe, D. (1971) Alterations of enzymatic activities during muscle differentiation in vitro. Dev. Biol., 25: 1–29.Google Scholar
  22. Van Brussel, E., Yang, J.J., Seraydarian, M.W. (1983) Isozymes of creatine kinase in mammalian cell cultures. J. Cell. Physiol. 116: 221–226.Google Scholar
  23. Vial, C., Godinot, G., and Gautheron, D. (1972) Creatine Kinase (EC 2.7.3.2.) in pig heart mitochondria. Properties and role in phosphate potential regulation. Biochimie, 54: 843–852.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Maria W. Seraydarian
    • 1
  • Takenori Yamada
    • 1
  1. 1.School of Nursing and Department of Physiology Center for the Health SciencesUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations