Effect of Calcium Antagonists on Vasopressin Induced Changes in Myocardial and Renal Pyridine Nucleotides in the Intact Rat

  • D. DiPette
  • R. Townsend
  • J. Guntipalli
  • K. Simpson
  • A. Rogers
  • E. Bourke
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


Recent experimental interest has centered on the role of the calcium antagonists in the preservation of tissue function due to their ability to inhibit intracellular calcium accumulation as well as their potent vasodilatory properties. Most studies to date have centered primarily on myocardial tissue rendered either ischemic or anoxic by coronary artery ligation or manipulation of perfusing solutions. Assessment of myocardial function has included the quantitation of infarct size,1 ultrastructural histologic changes,2 or the evaluation of cellular biochemical parameters such as measurement of high energy phosphates,3 intracellular pH,4 and pyridine nucleotides.5


Calcium Antagonist Renal Cortex Lower Body Negative Pressure Pyridine Nucleotide High Energy Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bush LR, Romson JL, Ash JL, Lucchesi BR. Effects of diltiazem on extent of ultimate myocardial injury resulting from temporary coronary artery occlusion in dogs. J. Cardiovas. Pharmacol., 4 (2): 285–296, 1982.CrossRefGoogle Scholar
  2. 2.
    Fujiwara H, Ashra M, Millard RW, Sato S, Schwartz A. Effects of diltiazem, a calcium channel inhibitor, in retarding cellular damage produced during early myocardial ischemia in pigs: a morphometric and ultrastructural analysis. JACC, 3 (6): 1427–37, June 1984.PubMedGoogle Scholar
  3. 3.
    Ashraf M, Onda M, Benedict J, Millard R. Prevention of calcium paradox-related myocardial cell injury with diltiazem, a calcium channel blocking agent. Am. J. Cardiol., 49: 1675 1681, May 1982.Google Scholar
  4. 4.
    Ishihara K, Abiko Y. Effect of diltiazem, a calcium antagonist, on myocardial pH in ischemic canine heart. J. Pharmacol. Exp. Ther., 222 (3): 720–725, 1982.Google Scholar
  5. 5.
    Kissin I, Kilpatrick J. Effect of nifedipine on myocardial energy balance in experimental coronary vasoconstriction and occlusion. J. Cardiovasc. Pharmacol., 4 (1): 111–115, 1982.PubMedCrossRefGoogle Scholar
  6. 6.
    Burch R, Halushka P. Verapamil inhibition of vasopressinstimulated water flow: possible role of intracellular calcium. J. Pharmacol. Exp. Ther., 226 (3): 701–705, 1983.PubMedGoogle Scholar
  7. 7.
    Cooper C, Malik K. Mechanism of action of vasopressin on prostaglandin synthesis and vascular function in the isolated rat kidney: effect of calcium antagonists and calmodulin inhibitors. J. Pharmacol. Exp. Ther., 229 (1): 139–147, 1983.Google Scholar
  8. 8.
    Hof R,Iiof A, Neumann P. Effects of PY 108–068, a new calcium channel blocker on general haemodynamics and regional blood flow in anaesthetized cats. A comparison with nifedipine. J. Cardiovasc. Pharmacol., 4: 352–362.Google Scholar
  9. 9.
    Hof RP. Calcium antagonist and the peripheral circulation: differences and similarities between PY 108–068, nicardipine, verapamil and diltiazem. Am. J. Pharmacol., 78: 375–394, 1983.Google Scholar
  10. 10.
    Wilson PD, Schrier RW. An in vitro model of acute renal failure: calcium restriction protects against ischemic cell death in cultured nephron segments. Clin. Res., 32: 460A, 1984.Google Scholar
  11. 11.
    Bakris GL, Larson TS, Burnett JC. The protective role of verapamil against rapid contrast-induced intrarenal vasconstriction. Clin. Res., 32: 440A, 1984.Google Scholar
  12. 12.
    Chance B. Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria. Circ. Res., 38 (1): 31–38, 1976.Google Scholar
  13. 13.
    Sugano T, Oshino N, Chance B. Mitochondrial functions under hypoxic conditions: the steady state of cytochrome reduction and of energy metabolism. Biochem. Biophys. Acta., 347: 340–358, 1974.PubMedCrossRefGoogle Scholar
  14. 14.
    Swain JL, Sabina RL, McHale PA, Greenfield JC, Holmes EW. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am. J. Physiol., 242 (11): H817 - H26, 1982.Google Scholar
  15. 15.
    Altura BM. Comparative cellular and pharmacological actions of neurohypophyseal hormones on smooth muscle. Fed. Proc., 36: 1840, 1977.PubMedGoogle Scholar
  16. 16.
    Cowley AW, Switzer S, Guinn M. Evidence and quantification of the vasopressin arterial pressure control system in dogs. Circ. Res., 46: 48–67, 1980.Google Scholar
  17. 17.
    Montani JP, Liard JF, Schoun J, Mohring J. Hemodynamic effects of exogenous and endogenous vasopressin at low plasma concentration in conscious dogs. Circ. Res., 47: 346–55, 1980.PubMedGoogle Scholar
  18. 18.
    Liard JF, Deriaz O, Schelling P, Thibonnier M. Cardiac output distribution during vasopressin infusion or dehydration in conscious dogs. Am. J. Physio., 243: H663–9, 1982.Google Scholar
  19. 19.
    Cochrane JPS, Forsling ML, Menzies Gow N, Le Quesne LP. Arginine vasopressin release following surgical operations. Br. J. Surg., 68: 209–213, 1981.PubMedCrossRefGoogle Scholar
  20. 20.
    Goldsmith SR, Francis GS, Cowley AW, Cohn JN. Response of vasopressin and norepinephrine to lower body negative pressure in humans. Am. J. Physiol., 243: H970 - H973, 1982.PubMedGoogle Scholar
  21. 21.
    Heyes MP, Fraber MO, Manfredi F, Robertshaw D, Weinberger M, Fineberg N, Robertson G. Acute effects of hypoxia on renal and endocrine function in normal humans. Am. J. Physiol. 243: R265 - R270, 1982.PubMedGoogle Scholar
  22. 22.
    Cowley AW, Cushman WC, Quillen EW, Skelton MM, Langford HG. Vasopressin elevation in essential hypertension and increased responsiveness to sodium intake. Hypertension, 3 (1): I93 - I100, 1981.PubMedGoogle Scholar
  23. 23.
    Thibonnier M, Aldigier JC, Soto ME, Sassano P, Menard J, Corvol P. Abnormalities and drug-induced alterations of vaso-pression in human hypertension. Clin. Science, 61: 1495–152S, 1981.Google Scholar
  24. 24.
    Thibonnier M, Soto ME, Menard J, Aldiger JC, Corvol P, Milliez P. Reduction of plasma and urinary vasopressin during treatment of severe hypertension by captopril. Eur. J. Clin. Invest., 11: 449–453, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Padfield PL. Vasopressin in hypertension. Amer. Heart J., 94: 531, 1978.CrossRefGoogle Scholar
  26. 26.
    Goldsmith SR, Francis GS, Cowley AW, Levine TB, Cohn JN. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J. Am. Coll. Cardio., 1(6), 138590, 1983.Google Scholar
  27. 27.
    Vaziri ND, Skowsky R, Saiki J. Antidiuretic hormone in end-stage renal disease. J. Dialysis., 4 (2and3): 73–81, 1980.Google Scholar
  28. 28.
    Shimamoto K, Watarai I, Miyahara M. A study of plasma vasopressin in patients undergoing chronic hemodialysis. J. Clin. Endocrinol. Metab., 45: 714, 1977.PubMedCrossRefGoogle Scholar
  29. 29.
    Klingenberg M. Nicotinamide-adenine denucleotides (NAD, NADP, NADH, NADPH); spectrophotometric and fluorimetric methods, H.U. Bergmeyer (ed), Methods of Enzymatic Analysis (2nd edition) New York, Academic Press, Inc., 4:2045–2059, 1974.Google Scholar
  30. 30.
    Wilkenson JH. LDH1, (2-hydroxybutyrate dehydrogenase) UV-assay. In H.U. Bergmeyer (ed), Methods of Enzymatic Analysis (2nd edition), New York, Academic Press, Inc., 2:603–612, 1974.Google Scholar
  31. 31.
    Baron DW, Walls JT, Anderson RE, Harrison CE. Protective effect of lidocaine during regional myocardial ischemia, an altered pathophysiologic response assessed by NADH fluorescence. Mayo Clin. Proc., 57: 442–447, 1982.Google Scholar
  32. 32.
    Burch HB, Lowry OH, Von Dippe P. The stability of triphosphopyridine nucleotide and its reduced form in rat liver. J. Biol. Chem., 238 (8): 2838–2842, 1963.PubMedGoogle Scholar
  33. 33.
    Bourke E, Rogers A, Guntipalli J. Studies on the antiphosphaturic action of insulin (I) independent of parathyroid hormone (PTH). Clin. Research, 31 (2), 1983.Google Scholar
  34. 34.
    Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer, KA. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am. J. Pathol., 92: 187–214, 1978.PubMedGoogle Scholar
  35. 35.
    Jennings RB, Reimer KA, Hill ML, Mayer SE. Total ischemia in dog hearts, in vitro. 1. Comparison of high energy phosphate production, utilization and depletion, and of adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ. Res., 49: 892–900, 1981.PubMedGoogle Scholar
  36. 36.
    Reimer KA, Jennings RB, Hill ML. Total ischemia in dog hearts, in vitro. 2. High energy phosphate depletion and associated defects in energy metabolism, cell volume regulation, and sarcolemmal integrity. Circ. Res., 49: 901–911, 1981.PubMedGoogle Scholar
  37. 37.
    Henry PD, Schuchleib R, Davis J, Weiss ES, Sobel BE. Myocardial contracture and accumulation of mitochondrial calcium in ischemic rabbit heart. Am. J. Physiol., 233 (6): H677 - H684, 1977.PubMedGoogle Scholar
  38. 38.
    Shen AC, Jennings RB. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am. J. Pathol., 67: 441–452, 1972.PubMedGoogle Scholar
  39. 39.
    Bolling SF, Schirmer WJ, Gott VL, Flaherty JT, Bulkley BH, Gardner TJ. Enhanced myocardial protection with verapamil prior to postischemic reflow. Surgery, 283–290, August 1983.Google Scholar
  40. 40.
    Nayler WG, Ferrari R, Williams A. Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium. Am. J. Cardiol., 46: 242–248, 1980.PubMedCrossRefGoogle Scholar
  41. 41.
    Rosenberger LB, Jacobs LW, Stanton HC. Evaluation of cardiac anoxia and ischemia models in the rat using calicum antagonists. Life Sci., 34: 1379–1387, 1984.PubMedCrossRefGoogle Scholar
  42. 42.
    Aukland K, Kirg J. Renal oxygen tension. Nature, 188: 671, 1960.PubMedCrossRefGoogle Scholar
  43. 43.
    Epstein FH, Balaban, Ross BD. Redox state of cytochrom aa3 in isolated perfused rat kidney. Am. J. Physiol., 243: F356 - F363, 1982.PubMedGoogle Scholar
  44. 44.
    Frega NS, DiBona DR, Guertler B, Leaf A. Ischemic renal injury. Kidney Int., 10: S17 - S25, 1976.Google Scholar
  45. 45.
    Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG. Ischemic damage and repair in the rat proximal tubule: differences among the Sl, S2 and S3 segments. Kidney Int., 14: 31–49, 1978.PubMedCrossRefGoogle Scholar
  46. 46.
    Kanda K, Flaim S. Effects of nifedipine on total cardiac output distribution in conscious rat. J. Pharm. Exp. Ther., 228: 711–718, 1984.Google Scholar
  47. 47.
    Humes HD, Simmons CF, Brenner BM. Effect of verapamil on the hydroosmotic response to antidiuretic hormone in toal urinary bladder. Am. J. Physiol., 239: F250 - F257, 1980.PubMedGoogle Scholar
  48. 48.
    Dantzler WH, Brokl OH. Verapamil and quinidine effects on PAH transport by isolated perfused renal tubules. Am. J. Physiol., 246: F188 - F200, 1984.PubMedGoogle Scholar
  49. 49.
    Hof RP. Selective effects of different calcium antagonists on the peripheral circulation. TIPS, 100–102, 1984.Google Scholar
  50. 50.
    Flaim SF, Zelis R. Effects of diltiazem on total cardiac output distribution in conscious rats. J. Pharm. Exp. Ther., 222: 359–366, 1982.Google Scholar
  51. 51.
    Goldfarb D, Iaina A, Serban I, Gavendo S, Kapuler S, Eliahou E. Beneficial effect of verapamil in ischemic acute renal failure in the rat. Proc. Soc. Exp. Biol. Med., 172: 389–392, 1983PubMedGoogle Scholar
  52. 52.
    Malls CD, Cheung JY, Leaf A, Bonventre HV. Effects of verapamil in models of ischemic acute renal failure in the rat. Am. J. Physiol., 245: F735–742, 1983.Google Scholar
  53. 53.
    Eliahou HE, Brodman RR, Friedman EA. Adrenergic blockers in ischemic acute renal failure in the rat. Proceedings of the Conference on Acute Renal Failure DHEW publication No. (NIH) 74–608, New York, 265–280, 1973.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. DiPette
    • 1
  • R. Townsend
    • 1
  • J. Guntipalli
    • 1
  • K. Simpson
    • 1
  • A. Rogers
    • 1
  • E. Bourke
    • 1
  1. 1.Department of Medicine, Allegheny-Singer Research InstituteAllegheny General HospitalPittsburghUSA

Personalised recommendations