Advertisement

Glycerol Kinase Deficiency: Compartmental Considerations Regarding Pathogenesis and Clinical Heterogeneity

  • Edward R. B. McCabe
  • William K. Seltzer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)

Abstract

In the past prokaryotic and eukaryotic mutations were used to define the sequence of biochemical pathways. Now we are beginning to use mutations to understand the organization, integration, and regulation of cellular metabolism. Glycerol kinase deficiency (McKusick No. 30703) (1), an inherited disorder involving a compartmented enzyme (2), offers a model for observing the effects that disruption of a reversibly formed microenvironment might have on the functional integrity and energy economy of the cell.

Keywords

Outer Mitochondrial Membrane Juvenile Form Glycerol Kinase Infantile Form Adrenal Hypoplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. McKusick, “Mendelian Inheritance in Man - Catalogs of Autosomal Dominant, Autosomal Recessive, and X-Linked Phenotypes, Sixth Edition”, The Johns Hopkins University Press, Baltimore (1983), p. 1050.Google Scholar
  2. 2.
    E. R. B. McCabe, Human glycerol kinase deficiency: An inborn error of compartmental metabolism, Biochem. Med. 30: 215 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    E. R. B. McCabe, P. V. Fennessey, M. A. Guggenheim, B. S. Miles, W. W. Bullen, D. J. Sceats, and S. I. Goodman, Human glycerol kinase deficiency with hyperglycerolemia and glyceroluria, Biochem. Biophys. Res. Commun. 78: 1327 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    C. I. Rose and D. S. M. Haines, Familial hyperglycerolemia, J. Clin. Invest. 61: 163 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    M. A. Guggenheim, E. R. B. McCabe, M. Roig, S. I. Goodman, G. M. Lum, W. W. Bullen, and S. P. Ringel, Glycerol kinase deficiency with neuromuscular, skeletal and adrenal abnormalities, Ann. Neurol. 7: 441 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    E. I. Ginns, J. A. Barranger, S. W. McClean, C. Sliva, R. Young, E. Schaefer, S. I. Goodman, and E. R. B. McCabe, A juvenile form of glycerol kinase deficiency with episodic vomiting, acidemia and stupor, J. Peds., in press (1984).Google Scholar
  7. 7.
    J. A. Bartley, D. K. Miller, J. T. Hayford, and E. R. B. McCabe, The concordance of X-linked glycerol kinase deficiency with X-linked adrenal hypoplasia in two families, Lancet (2): 733 (1982).Google Scholar
  8. 8.
    J. A. Bartley, J. T. Hayford, J. Perkins, H. I. Firminger, and E. R. B. McCabe, Glycerol kinase deficiency: A X-linked disorder associated with congenital adrenal hypoplasia, myopathy and developmental delay, Proc. Grnwd. Gen. Cen. 2: 110 (1983).Google Scholar
  9. 8a.
    W.O. Renier, F.A.E. Nabben, T.W.J. Hustinx, J.H. Veerkamp, B.J. Otten, H.J. Ter Laak, B.G.A. Ter Haar, and F.J.M. Gabreels, Congenital adrenal hypoplasia, progressive muscular dystrophy, and severe mental retardation, in association with glycerol kinase deficiency, in male sibs, Clin. Gen. 24: 243 (1983).CrossRefGoogle Scholar
  10. 9.
    R. Matalon, L. Librik, J. Wise, and E. R. B. McCabe, unpublished.Google Scholar
  11. 10.
    A. Eriksson, S. Lindstedt, L. Ransnas, and L. von Wendt, Deficiency of glycerol kinase (EC 2.7.1.30), Clin. Chem. 29: 718 (1983).PubMedGoogle Scholar
  12. 11.
    D. Pometta, A. Suenram, N. von der Weid, and J. J. Widmann, Liver glycerokinase deficiency in man with hyperglycerolaemia and hypertriglyceridaemia, Europ. J. Clin. Invest. 14: 103 (1984)CrossRefGoogle Scholar
  13. 12.
    Y. Gousault, E. Turpin, D. Neel, C. Dreux, B. Chanu, R. Bakin, and J. Rouffy, ‘Pseudohypertriglyceridemia’ caused by hyperglycerolemia due to congenital enzyme deficiency, Clin. Chim. Acta 123: 269 (1982).CrossRefGoogle Scholar
  14. 13.
    J. Bartley, J. Hayford, and R. Ward, Glycerol kinase activity of fibroblasts from obligate carriers of glycerol kinase deficiency, Amer. J. Hum. Genet. 34: 45A (1982).Google Scholar
  15. 14.
    J. E. Wilson, Ambiquitous enzymes: Variation in intracellular distribution as a regulatory mechanism, Trends Biochem. Sci. 3: 124 (1978).CrossRefGoogle Scholar
  16. 15.
    J. E. Wilson, Brain hexokinase, the prototype ambiquitous enzyme, Curr. Top. Cell Reg. 16: 1 (1980).Google Scholar
  17. 16.
    D. J. Winzor, L. D. Ward, and L. W. Nichol, Quantitative considerations of the consequences of an interplay between ligand binding and reversible adsorption of a macromolecular solute, J. Theor. Biol. 98: 171 (1982).PubMedCrossRefGoogle Scholar
  18. 17.
    W. K. Seltzer and E. R. B. McCabe, Subcellular distribution and kinetic properties of soluble and particulate-associated bovine adrenal glycerol kinase, Submitted for publication (1984).Google Scholar
  19. 18.
    C. Fiek, R. Benz, N. Roos, and D. Brdiczka, Evidence for the identity between the hexokinase binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria, Biochim. Biophys. Acta 688: 429 (1982).PubMedCrossRefGoogle Scholar
  20. 19.
    A.-K. Ostlund, U. Gohring, J. Krause, and D. Brdiczka, The binding of glycerol kinase to the outer membrane of rat liver mitochondria: Its importance in metabolic regulation, Biochem. Med. 30: 231 (1983).PubMedCrossRefGoogle Scholar
  21. 20.
    E. R. B. McCabe, W. K. Seltzer, and W. W. Bullen, Glycerol kinase: Different properties from human liver and fibroblasts, Fed. Proc. 41: 879 (1982).Google Scholar
  22. 21.
    W. K. Seltzer, W. W. Bullen, and E. R. B. McCabe, Human glycerol kinase: Comparison of properties from fibroblasts and liver, Life Sci. 32: 1721 (1983).PubMedCrossRefGoogle Scholar
  23. 22.
    E. R. B. McCabe, W. K. Seltzer, R. Hill, and D. Sadava, Glycerol kinase: Developmental biochemistry in man, Pediat. Res. 16: 298A (1982).Google Scholar
  24. 23.
    W. K. Seltzer and E. R. B. McCabe, Glycerol kinase activity in human adrenal gland, Pediat. Res. 17: 172A (1983).Google Scholar
  25. 24.
    W. K. Seltzer and E. R. B. McCabe, Subcellular distribution and bisubstrate kinetics of rat, bovine and human adrenal glycerol kinase, Fed. Proc. 42: 2079 (1983).Google Scholar
  26. 24.
    W. K. Seltzer and E. R. B. McCabe, Subcellular distribution and bisubstrate kinetics of rat, bovine and human adrenal glycerol kinase, Fed. Proc. 42: 2079 (1983).Google Scholar
  27. 26.
    P. L. Felgner, J. L. Messer, and J. E. Wilson, Purification of a hexokinase-binding protein from the outer mitochondrial membrane, J. Biol. Chem. 254: 4944 (1979).Google Scholar
  28. 27.
    M. Linden, P. Gellerfors, and B. D. Nelson, Pore protein and the hexokinase-binding protein from the outer membrane of rat liver mitochondria are identical, FEBS Letters 141: 189 (1982).PubMedCrossRefGoogle Scholar
  29. 28.
    N. Roos, R. Benz, and D. Brdiczka, Identification and characterization of the pore forming protein in the outer membrane of rat liver mitochondria, Biochim. Biophys. Acta 686: 204 (1982).PubMedCrossRefGoogle Scholar
  30. 29.
    I. A. Rose and J. V. B. Warms, Mitochondrial hexokinase -release, rebinding and location, J. Biol. Chem. 242: 1635 (1967).PubMedGoogle Scholar
  31. 30.
    P. L. Felgner, Studies on the physiological raison d’etre of mitochondrial hexokinase, Fed. Proc. 32: 488 (1973).Google Scholar
  32. 31.
    P. A. Srere and R. W. Estabrook, eds., Preface, in: “Microenvironments and Metabolic Compartmentation,” Academic Press, New York (1978), p. XIIIGoogle Scholar
  33. 32.
    G. R. Welch and J. A. DeMoss, Enzyme organization in vivo: Thermodynamic-kinetic considerations, in: “Microenvironments and Metabolic Compartmentation,” P. A. Srere and R. W. Estabrook, eds., Academic Press, New York (1978), pp. 323–343.Google Scholar
  34. 33.
    A. S. Chou and J. E. Wilson, Purification and properties of rat brain hexokinase, Arch. Biochem. Biophys. 151: 48 (1972).PubMedCrossRefGoogle Scholar
  35. 34.
    R. E. Gots, F. A. Gorin, and S. P. Bessman, Kinetic enhancement of bound hexokinase activity by mitochondrial respiration, Biochem. Biophys. Res. Commun. 49: 1249 (1972).PubMedCrossRefGoogle Scholar
  36. 35.
    R. E. Gots and S. P. Bessman, The functional compartmentation of mitochondrial hexokinase, Arch. Biochem. Biophys. 163: 7 (1974).PubMedCrossRefGoogle Scholar
  37. 36.
    S. P. Bessman, B. Borreback, P. J. Geiger, and S. Ben-Or, Mitochondrial creatinine kinase and hexokinase–two examples of compartmentation predicted by the hexokinase mitochondrial binding theory of insulin action, in: “Microenvironments and Metabolic Compartmentation,” P. A. Srere and R. W. Estabrook, eds., Academic Press, New York (1978), pp. 111–128.Google Scholar
  38. 37.
    M. Inui and S. Ishibashi, Functioning of mitochondria-bound hexokinase in rat brain in accordance with generation of ATP inside the organelle, J. Biochem. 85: 1151 (1979).PubMedGoogle Scholar
  39. 38.
    S. P. Bessman and P. J. Geiger, Compartmentation of hexokinase and creatine phosphokinase, cellular regulation, and insulin action, Curr. Top. Cell Reg. 16: 55 (1980).Google Scholar
  40. 39.
    E. R. B. McCabe, D. Sadava, W. W. Bullen, H. A. McKelvey, and C. I. Rose, Investigations of fibroblast complementation and enzyme kinetics from clinically distinct individuals with glycerol kinase deficiency, Am. J. Hum. Gen. 32: 46A (1980).Google Scholar
  41. 40.
    E. R. B. McCabe, D. Sadava, W. W. Bullen, H. A. McKelvey, W. K. Seltzer, and C. I. Rose, Human glycerol kinase deficiency: Enzyme kinetics and fibroblast hybridization, J. Inher. Metab. Dis. 5: 177 (1982).PubMedCrossRefGoogle Scholar
  42. 41.
    E. R. B. McCabe, unpublished.Google Scholar
  43. 42.
    B. T. Jenkins and A. K. Hajra, Glycerol kinase and dihydroxyacetone kinase in rat brain, J. Neurochem. 26: 377 (1976).PubMedCrossRefGoogle Scholar
  44. 43.
    J. T. Tildon, J. H. Stevenson, and P. T. Ozand, Mitochondrial glycerol kinase activity in rat brain, Biochem. J. 157: 513 (1976).PubMedGoogle Scholar
  45. 44.
    J. T. Tildon and L. M. Roeder, Glycerol oxidation in rat brain: Subcellular localization and kinetic characteristics, J. Neurosci. Res. 5: 7 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Edward R. B. McCabe
    • 1
  • William K. Seltzer
    • 1
  1. 1.Departments of Pediatrics and Biochemistry, Biophysics and GeneticsUniversity of Colorado School of MedicineDenverUSA

Personalised recommendations