Diabetes Mellitus and Hypothyroidism Induce Changes in Myosin Isoenzyme Distribution in the Rat Heart — Do Alterations in Fuel Flux Mediate These Changes?

  • Wolfgang H. Dillmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


The different pathophysiological mechanisms which influence the formation of specific cardiac proteins are only incompletely understood. Changes in the level of specific cardiac proteins could result for example, from alterations in the hormonal milieu, changes in cardiac substrate consumption, alterations in the level of high energy phosphates and other mechanisms. Recent investigations have shown that the level of one specific group of proteins in the rat heart ventricle, the isozymes of myosin, are markedly influenced by insulin lack,1,2 and hypothyroidism. 3,4 The existence of three myosin isoenzymes in the rat ventricle (myosin V1, V2, V3) has recently been well documented.3-5 In normal rat hearts myosin V1, which has the highest Ca++-activated myosin ATPase activity, predominates, whereas in hypothyroid or diabetic rats myosin V3, which has the lowest myosin ATPase activity, becomes the predominant form.1-4 The hypothyroidism and diabetes-induced myosin V3 predominance results in a decrease in Ca++-activated myosin ATPase activity. A very close correlation between the activity of this enzyme and the maximal velocity of muscle contraction is well established.67 In addition a very close correlation exists between high levels of V1 isomyosin and the maximal speed of contraction of rat papillary muscle.8 Administration of physiological doses of thyroid hormone to hypothyroid rats and of insulin to diabetic rats reverts the myosin isoenzyme distribution to the normal pattern.1,2,4


Diabetic Heart Cardiac Myosin Myosin ATPase High Energy Phosphate Fructose Diet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.H. Dillmann, Diabetes Mellitus Induces Changes in Cardiac Myosin of the Rat. Diabetes 29: 579 (1980).PubMedGoogle Scholar
  2. 2.
    A. Malhotra, S. Penpargkul, F.S. Fein, E.H. Sonnenblick, J. Scheuer, The Effect of Streptozotocin-induced Diabetes in Rats on Cardiac Contractile Proteins. Circ.Res. 49: 1243 (1981).PubMedGoogle Scholar
  3. 3.
    J.F. Hoh, P.A. McGrath, P.T. Hale, Electrophoretic Analysis of Multiple Forms of Rat Cardiac Myosin: Effects of Hypophysectomy and Thyroxine Replacement. J.Mol.Cell.Card. 10: 1053 (1978).CrossRefGoogle Scholar
  4. 4.
    W.H. Dillmann, S. Berry, N.M. Alexander, A Physiological Dose of Triiodothyronine Normalized Cardiac Myosin Adenosine Triphosphatase Activity and Changes Myosin Isoenzyme Distribution in Semistarved Rats. Endocrinology 112: 2081 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    A.M. Lompre, J.J. Mercadier, C. Wisnewsky, P. Bouveret, C. Pantaloni, A. d’Albis, K. Schwartz, Species-and age-dependent Changes in the Relative Amounts of Cardiac Myosin Isoenzymes in Mammals. Developmental Biology 84: 286 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Barany, ATPase Activity of Myosin Correlates with Speed of Muscle Shortening. J. Gen.Physiol. 50: 197 (1967).PubMedCrossRefGoogle Scholar
  7. 7.
    C. Delcayre, B. Swynghedauw, A Comparative Study of HeartGoogle Scholar
  8. Myosin ATPase and Light Subunits from Different Species. Pfluegers Arch. 355: 39 (1975).CrossRefGoogle Scholar
  9. 8.
    K. Schwartz, Y. Lecarpentier, J.L. Martin, A.M. Lompre, J.J. Mercadier, B. Swynghedauw, Myosin Isoenzymic Distribution Correlates with Speed of Myocardial Contraction. J. Mol. Cell. Card. 13: 1071 (1981).CrossRefGoogle Scholar
  10. 9.
    W.H. Dillmann, A. Barrieux, G.S. Reese, Effect of Diabetes and Hypothyroidism on the Predominance of Cardiac Myosin Heavy Chains Synthesized in vivo or in a Cell-free System. J. Biol. Chem. (In Press).Google Scholar
  11. 10.
    A.M. Sinha, P.K. Umeda, C.J. Kavinsky, C. Rajamanickam, H-J Hsu, S. Jakovcic, M. Rabinowitz, Molecular Cloning of mRNA Sequences for Cardiac α;-and ß-form Myosin Heavy Chains: Expression in Ventricles of Normal, Hypothyroid and Thyrotoxic Rabbit. Proc. Natl. Acad. Sci. USA 79: 5847 (1982).PubMedCrossRefGoogle Scholar
  12. 11.
    P. Randle, P. Rubbs, The Cardiovascular System 1, the Heart in: Handbook of Physiology, Sect. 2, R.M. Berne, N. Sperelakis and S.R. Geiser, eds., American Physiological Society, Bethesda, MD. (1974)Google Scholar
  13. 12.
    F.L. Hoch, Metabolic Effects of Thyroid Hormones, in: Handbook of Physiology, Sect. 7: Endocrinology, R.O. Greep, E.B. Astwood, eds., American Physiological Society, Washington, D.C.Google Scholar
  14. 13.
    W.H. Dillmann, Myosin Isoenzyme Distribution and Ca++-activated Myosin ATPase Activity in the Rat Heart is Influenced by Fructose Feeding and Triiodothyronine. Endocrinology (In Press)Google Scholar
  15. 14.
    G. Van den Berghe, Metabolic Effects of Fructose in the Liver. Curr. Top.Cell.Regul. 13: 97 (1978).PubMedGoogle Scholar
  16. 15.
    W.H. Dillmann, Influence of Thyroid Hormone Administration on Myosin ATPase Activity and Myosin Isoenzyme Distribution in the Heart of Diabetic Rats. Metabolism 31: 199 (1982).PubMedCrossRefGoogle Scholar
  17. 16.
    A.K. Bhan, A. Malhotra, Trypsin Digestion of Canine Cardiac Myosin. Arch.Biochem.Biophys. 174: 24 (1976).CrossRefGoogle Scholar
  18. 17.
    C.H. Fiske, Y. Subbarow, The Colorimetric Determination of Phosphorus. J.Biol.Chem. 66: 375 (1925).Google Scholar
  19. 18.
    E. Laye, Spectrophotometric and Turbidimetric Met±ods for Measuring Proteins, in: Methods in Enzymology, S.P. Colowich, N.O. Kaplan, eds. Academic Press, N.Y. (1957).Google Scholar
  20. 19.
    N.M. Alexander, J.F. Jennings, Analyses for Total Serum Thyroxine by Equilibrium Competitive Protein Binding on Small, Reusable Sephadex Columns. Clin.Chem. 20: 553 (1974).PubMedGoogle Scholar
  21. 20.
    N.M. Alexander, J.F. Jennings, Radioimmunoassay of Serum Triiodothyronine on Small, Reusable Sepandex Colums. Clin.Chem. 20: 1353 (1974).PubMedGoogle Scholar
  22. 21.
    E. Bernt, U. Bergmeyer, D-fructose, in: Methods in Enzymatic Analysis, H.U. Bergmeyer, ed. Academic Press, N.Y. (1974).Google Scholar
  23. 22.
    F.E. Kaiser, C.N. Mariash, H.L. Schwartz, J.H. Oppenheimer, Inhibition of Malic Enzyme Induction by Triiodothyronine in the Diabetic Rat: Reversal by Fructose Feeding. Metabolism 29: 767 (1980).PubMedCrossRefGoogle Scholar
  24. 23.
    A.E. Farah, A.A. Alousi, The Actions of Insulin on Cardiac Contractility. Life Sciences 29: 975 (1981).PubMedCrossRefGoogle Scholar
  25. 24.
    A.E. Renold, G.W. Thorn, Clinical Usefulness of Fructose. Am.J.Med. 14: 163 (1955).CrossRefGoogle Scholar
  26. 25.
    G.N. Prager, J.A. Ontko, Direct Effects of Fructose Metabolism on Fatty Acid Oxidation in a Recombined Rat Liver Mitochondria-high Speed Supernatant System. Biochem.Biophys.Acta 424: 386 (1976).PubMedGoogle Scholar
  27. 26.
    S.M. Lee, G.F. Tutwiler, R. Bressler, C.H. Kircher, Metabolic Control and Prevention of Nephropathy by 2-tetradecylglycidate in the Diabetic Mouse (db/db). Diabetes 31: 12 (1982).PubMedCrossRefGoogle Scholar
  28. 27.
    F.J. Pearce, J. Forster, J.R. Williamson, G.F. Tutwiler, Inhibition of Fatty Acid Oxidation in Normal and Hypoxic Per-fused Hearts by 2-tetradecylglycidic acid. J. Mol. Cell. Card. 11; 893 (1979).CrossRefGoogle Scholar
  29. 28.
    G.F. Tutwiler, P. Dellevigne. Action of the Oral Hypoglycemic Agent 2-tetradecylglycidic Acid on Hepatic Fatty Acid Oxidation and Gluconeogenesis. J.Biol.Chem. 254: 2935 (1979)PubMedGoogle Scholar
  30. 29.
    G.F. Tutwiler, T. Kirsch, R.J. Mohrbacker, W. Ho, Pharmacologic Profile of Methyl 2-tetradecylglycidate (McN-3716) - An Orally Effective Hypoglycemic Agent. Metabolism 27: 1539 (1978).PubMedCrossRefGoogle Scholar
  31. 30.
    G.F. Tutwiler, W. Ho, R.J. Mohrbacker. 2-teradecylglycidic acid. Meth. in Enzymology 72:533 (1981).Google Scholar
  32. 31.
    R.W. Tuman, J. Joseph, C.R. Bowden, H.J. Brentzel, G.F. Tutwiler. Effects of 2-tetradecylglycidic acid (TDGA) on GLucose Metabolism in Skeletal Muscle. Fed. Proc. 41: 511 (1982).Google Scholar
  33. 32.
    L.H. Opie, M.J. Tansey, B.M. Kennelly, The Heart in Diabetes Mellitus. Part I. Biochemical Basis for Myocardial Dysfunction. S. Afr. Med. J. 56: 207 (1979).PubMedGoogle Scholar
  34. 33.
    G.F. Tutwiler, M.T. Ryzlak, Inhibition of Metochondrial Carnitine Palmitoyl Transferase by 2-tetradecylglycidic acid (McN-3802). Life Sciences 26: 393 (1980).PubMedCrossRefGoogle Scholar
  35. 34.
    T.C. Kiorpes, D. Hoerr, L. Weaner, W. Ho, M. Inman, G.F. Tutwiler, Characterization of 2-tetradecylglycidyl-coenzyme A (TDGA-CoA) as an Irreversible, Active Site-directed Inhibitor of Rat Liver Mitochondrial Carnitine: Palmitoyl Transferase-A (CPT-A). Fed.Proc. 42: 2187 (1983).Google Scholar
  36. 35.
    P.B. Garland, P.J. Randle, E.A. Newsholme, Citrate as an Intermediary in the Inhibition of Phosphofructokinase in Rat Heart Muscle by Fatty Acids, Ketone Bodies, Pyruvate, Diabetes and Starvation. Nature 200: 169 (1963).PubMedCrossRefGoogle Scholar
  37. 36.
    P.J. Randle, P.K. Tubbs, Carbohydrate and Fatty Acid Metabolism, in: Handbook of Physiology - The cardiovascular System, Vol. I, American Physiological Society, Bethesda, MD, (1979).Google Scholar
  38. 37.
    J.O. Olubadewo, H.G. Wilcox, M. Heimberg, Effect of Glycerol on Oleate Metabolism by Livers from Triiodothyronine (T3) treated and euthyroid (EU) rats. 65th Annual Meeting The Endocrine Society, San Antonio, Texas (Abstract 484)(1983).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Wolfgang H. Dillmann
    • 1
  1. 1.Department of MedicineUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations