Advertisement

The Effect of Reperfusion and Streptokinase on Ischemic Myocardium Serum Creatine Kinase Activity, MM Subtypes and Myocardial Blood Flow

  • Judy Mickelson
  • C. Jeffrey Carlson
  • Bianka Emilson
  • Elliot Rapaport
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)

Abstract

The amount of myocardium irreversibly damaged after coronary artery occlusion is of prognostic significance.1-4 Attempts to limit the extent of damage using streptokinase have been effective in reestablishing blood flow to ischemic myocardium.5-11 We were interested in the effect streptokinase has on ischemic myocardium distal to an occlusion when reperfusion occurs and the extent to which streptokinase affects myocardial reperfusion. We measured serum creatine kinase and its MM subtypes. These measurements are simple but indirect means of assessing infarct size that can be used clinically.4-12 However, when reperfusion occurs, serial serum creatine kinase activity is altered.10,13_15obtained more direct measurements of ischemia and subsequent reperfusion using radiolabeled microspheres to determine myocardial blood flow.16,17

Keywords

Creatine Kinase Infarct Size Myocardial Blood Flow Myocardial Segment Coronary Artery Occlusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. E. Sobel, G. F. Bresnahan, W. E. Shell, and R. D. Yoder, Estimation of infarct size in man and its relation to prognosis, Circulation 46: 640 (1972).PubMedGoogle Scholar
  2. 2.
    D. Mathey, W. Bleifeld, P. Hanrath, and S. Effert, Attempt to quantitate relation between cardiac function and infarct size in acute myocardial infarction, Br Heart J 36: 271 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    W. E. Shell and B. E. Sobel, Biochemical markers of ischemic injury. Circulation 53 (Suppl I): I - 98 (1976).Google Scholar
  4. 4.
    R. M. Norris, R. M. L. Whitlock, C. Barratt-Boyes, and C. W. Small, Clinical measurement of myocardial infarct size. Modification of a method for the estimation of total creatine phosphokinase release after myocardial infarction, Circulation 51: 614 (1975).PubMedGoogle Scholar
  5. 5.
    M. J. Cowley, A. Hastillo, G. W. Vetrovec, and M. L. Hess, Effects of intracoronary streptokinase in acute myocardial infarction, Am Heart J 102: 1149 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    G. Lee, J. Giddens, P. Krieg, A. Dajee, M. Suzuki, J. A. Kozina, R. M. Ideka, A. N. DeMaria, and D. T. Mason, Experimental reversal of acute coronary thrombotic occlusion and myocardial injury in animals utilizing streptokinase, Am Heart J 102: 1139 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Rentrop, H. Blanke, K. R. Karsch, W. Rutsch, M. Schartl, W. Merx, R. Dörr, D. Mathey, and K. Kuck, Changes in left ventricular function after intracoronary streptokinase, Am Heart J 102: 1188 (1981).PubMedCrossRefGoogle Scholar
  8. L. A. Reduto, G. C. Freund, J. M. Gaeta, R. W. Smalling, B. Lewis, and K. L. Gould, Coronary artery reperfusion in acute myocardial infarction: beneficial effects of intra- coronary streptokinase on left ventricular salvage and performance, Am Heart J 102: 1168 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    D. G. Mathey, K.-H. Kuck, V. Tilsner, H.-J. Krebber, and W. Bleifeld, Nonsurgical coronary artery recanalization in acute transmural myocardial infarction, Circulation 63: 489 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    W. Merx, R. Dörr, P. Rentrop, H. Blanke, K. R. Karsch, D. G. Mathey, P. Kremer, W. Rutsch, and H. Schmutzler, Evaluation of the effectiveness of intracoronary streptokinase infusion in acute myocardial infarction: postprocedure management and hospital course in 204 patients, Am Heart J 102: 1181 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    European Cooperative Study Group for Streptokinase Treatment in Acute Myocardial Infarction, Streptokinase in acute myocardial infarction, N Engl J Med 301: 797 (1979).Google Scholar
  12. 12.
    B. E. Sobel, Applications and limitations of estimation of infarct size from serial changes in plasma creatine phosphokinase activity, Acta Med Scand 199 (Suppl 587): 151 (1976).CrossRefGoogle Scholar
  13. 13.
    K. A. Reimer, J. E. Lowe, M. M. Rasmussen, and R. B. Jennings, The wavefront phenomenon of ischemic cell death.Myocardial infarct size vs duration of coronary occlusion in dogs, Circulation 56: 786 (1977).PubMedGoogle Scholar
  14. 14.
    W. E. Shell, J. K. Kjekshus, and B. E. Sobel, Quantitative assessment of the extent of myocardial infarction in the conscious dog by means of analysis of serial changes in serum creatine phosphokinase activity, J Clin Invest 50: 2614 (1971).PubMedCrossRefGoogle Scholar
  15. 15.
    P. R. Maroko, J. K. Kjekshus, B. E. Sobel, T. Watanabe, J. W. Covell, J. Ross, and E. Braunwald, Factors influencing infarct size following experimental coronary artery occlusion, Circulation 43: 67 (1971).PubMedGoogle Scholar
  16. 16.
    G. D. Buckberg, J. C. Luck, D. B. Payne, J. I. E. Hoffman, J. P. Archie, and D. E. Fixler, Some sources of error in measuring regional blood flow with radioactive microspheres, J Appl Physiol 31: 598 (1971).PubMedGoogle Scholar
  17. 17.
    M. A. Heymann, B. D. Payne, J. I. E. Hoffman, and A. M. Rudolph, Blood flow measurements with radionuclide-labeled particles, Prog Cardiovasc Dis 20: 55 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    R. A. Wevers, H. P. Olthuis, J. C. C. Van Niel, M. G. M. Van Wilgenberg, and J. B. J. Soons, A study on the dimeric structure of creatine kinase (EC 2.7.3.2), Clin Chim Acta 75: 377 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    R. A. Wevers, R. J. Wolters, and J. B. J. Soons, Isoelectric focusing and hybridisation experiments on creatine kinase (EC 2.7.3.2), Clin Chim Acta 78: 271 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    R. A. Wevers, M. Delsing, J. A. G. Klein Gebbink, and J. B. J. Soons, Post-synthetic changes in creatine kinase isozymes (EC 2.7.3.2), Clin Chim Acta 86: 323 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    R. L. Morelli, C. J. Carlson, B. Emilson, D. Abendschein, and E. Rapaport, Serum creatine kinase MM isoenzyme sub-bands after acute myocardial infarction, Circulation 67: 1283 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    D. Abendschein, R. L. Morelli, C. J. Carlson, B. Emilson, and E. Rapaport, Creatine kinase MM isoenzyme subtype transformation after coronary artery occlusion in dogs, Circulation 64 (Suppl IV): IV - 153 (1981).Google Scholar
  23. 23.
    J.-P. Chapelle and C. Heusghem, Further heterogeneity demonstrated for serum creatine kinase isoenzyme MM, Clin Chem 26: 457 (1980).PubMedGoogle Scholar
  24. 24.
    W. G. Yasmineh, M. K. Yamada, and J. N. Cohn, Postsyntheticvariants of creatine kinase MM, J Lab Clin Med 98: 109 (1981).PubMedGoogle Scholar
  25. 25.
    H. Falter, L. Michelutti, A. Mazzuchin, and W. Whiston, Studies on the sub-banding of creatine kinase MM and the ‘CK conversion factor,’ Clin Biochem 14: 3 (1981).Google Scholar
  26. 26.
    S. B. Rosalki, An improved procedure for serum creatine phosphokinase determination, J Lab Clin Med 69: 696 (1967).PubMedGoogle Scholar
  27. 27.
    F. R. Elevitch, “Fluorametric Methods in Clinical Chemistry,” Little Brown & Company, Boston (1973).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Judy Mickelson
    • 2
    • 1
  • C. Jeffrey Carlson
    • 2
    • 1
  • Bianka Emilson
    • 2
    • 1
  • Elliot Rapaport
    • 2
    • 1
  1. 1.Medical ServiceSan Francisco General HospitalSan FranciscoUSA
  2. 2.Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations