Myocardial Glutamate Dehydrogenase Activity

  • Huey G. McDaniel
  • Ronald L. Jenkins
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


Glutamic dehydrogenase (GDH) has not been thought to play an important role in cardiac metabolism in the past. Aspartate aminotransferase was shown to mediate glutamate utilization by mitochondria and there was thought to be little GDH activity in heart mitochondria.1 However, the studies of Godinot et al showed that this enzyme could be purified from pig heart mitochondria and had different properties from the enzyme of beef liver mitochondria.2 Takala et al showed that the perfused rat heart produced ammonia and this appeared to come from GDH rather than the purine nucleotide cycle.3 Ammonia production was stimulated when the perfused heart was working. Studies using pig heart mitochondria indicated that glutamate was oxidized via glutamate dehydrogenase when the mitochondria were oxidizing certain substrates.4 Studies by Nuutinen et al showed that rat heart mitochondria readily formed ammonia from glutamate.5


Ammonium Sulfate Octanoic Acid Heart Mitochondrion Beef Liver Glutamate Oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. LaNone and J. Williamson, Control of the malate-aspartate shuttle in rat heart mitochondria, in: “Colloquium on Bioenergetics and Energy Transduction in Respiration and Photo-synthesis,” E. Quagliariello, S. Papa and C. Rossi, eds., Adriatica Editrice, Bari (1972).Google Scholar
  2. 2.
    C. Godinot and D. Gautheron, Regulation of pig heart mito- chondrial glutamate dehydrogenase by nucleotides and phosphate: Comparison with pig heart and beef liver purified enzymes, FEBS Letters. 13: 235 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Takala, J. Hiltunen, and I. Hassinen, The mechanism of ammonia production and the effect of mechanical work load on proteolysis and amino acid catabolism in isolated perfused rat heart, Biochem. J. 192: 285 (1980).PubMedGoogle Scholar
  4. 4.
    A. Younes, R. Durand, Y. Briand, and D. Gautheron, Interaction des oxydation du pyruvate et du glutamate au niveau des mitochondries de coeur de porc, Bull. Soc. Clin. Biol. 52: 811 (1970).Google Scholar
  5. 5.
    E. Nuutinen, J. Hiltunen, and I. Hassinen, The glutamate dehydrogenase system and the redox state of mitochondrial free nicotinamide adenine dinucleotide in myocardium, FEBS Letters. 128: 356 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    H. McDaniel, M. Yeh, R. Jenkins, and A. Razzaque, Glutamic dehydrogenase from rat heart mitochondria, I. Purification and physical properties including molecular weight determination. J. Mol. Cell. Cardiol. 16: 295 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    H. McDaniel, R. Jenkins, M. Yeh, and A. Razzaque, Glutamic dehydrogenase from rat heart mitochondria, II. Kinetic characteristics, J. Mol. Cell. Cardiol. 16: 303 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    H. McDaniel, M. Yeh, R. Jenkins, B. Freeman, and J. Simmons, Glutamic dehydrogenase activity in rat heart: demonstration of two forms of enzyme activity, Am. J. Physiol. 246: H483 (1984).PubMedGoogle Scholar
  9. 9.
    F. Wallheim, H. Bergmeyer, and I. Gutmann, Ammonials, in: “Methoden der Enzymatischen Analyse,” H. Bergemeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  10. 10.
    E. Bernt and H. Bergmeyer, L-Glutamat, in: “Methoden der Enzymatischen Analyse,” H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  11. 11.
    H. Bergmeyer, E. Bernt, H. Mollering, and E. Pfleider, L-Aspartat und L-asparagin, in: “Methoden der Enzymatischen Analyse,” H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  12. 12.
    H. Bergmeyer, Nucleosiddiphosphat-kinase, in: “Methoden der Enzymatischen Analyse,” H. Bergmeyer ed., Verlag Chemie, Weinheim (1974).Google Scholar
  13. 13.
    H. Mangold, Nucleinsauren und nucleotide, in: Dunnschiectchromatographie,“ E. Stahl, ed., Springer-Verlag, Berlin (1967).Google Scholar
  14. 14.
    H. McDaniel, W. Rogers, R. Russell, and C. Rackley, Effect of glucose-insulin-potassium during pacing, Circulation 58: 132 (1978).Google Scholar
  15. 15.
    B. Goldin and C. Frieden, Glutamic dehydrogenase, in: “Current Topics in Cellular Regulation,” B. Horecker and E. Stadtman, eds., Academic Press, New York (1971).Google Scholar
  16. 16.
    H. Helm, L-Glutamate dehydrogenase isoenzymes, Nature. 194: 773 (1962).PubMedCrossRefGoogle Scholar
  17. 17.
    G. DiPrisco and H. Strecker, Glutamate dehydrogenase of nuclear and extra-nuclear compartments of Chang’s liver cells, Eur. J. Biochem. 12: 483 (1970).Google Scholar
  18. 18.
    T. Kato and O. Lawry, Distribution of enzymes between nucleus and cytoplasm of single nerve cell bodies, J. Biol. Chem. 248: 2044 (1973).PubMedGoogle Scholar
  19. 19.
    J. Julliard and D. Gautheron, Regulatory effects of mitochondrial lipids on glutamate dehydrogenase, FEBS Letters 25: 343 (1972).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Borst, The pathway of glutamate oxidation by mitochondria isolated from different tissues, Biochim. Biophys. Acta. 57: 256 (1962).PubMedCrossRefGoogle Scholar
  21. 21.
    E. Davis and J. Bremer, Studies with isolated surviving rat hearts, Interdependence of free amino acids and citric acid cycle intermediates, Eur. J. Biochem. 38: 86 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Huey G. McDaniel
    • 1
  • Ronald L. Jenkins
    • 1
  1. 1.Veterans Administration Medical CenterUniversity of Alabama School of MedicineBirminghamUSA

Personalised recommendations