Myocardial Acidosis and the Mitigation of Tissue ATP Depletion in Ischemic Cardiac Muscle: The Role of the Mitochondrial ATPase

  • William Rouslin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


A number of reports have now appeared demonstrating a marked inhibition of the mitochondrial oligomycin-sensitive ATPase as the result of the interruption of blood flow (ischemia) in a number of tissues including liver,1,2 kidney,3,4 skeletal muscle5 and cardiac muscle.6–9 By and large, the ATPase inhibition observed in ischemic tissues appears to be reversible if blood flow is resumed early enough,2,4,6,9 suggesting that this inhibition represents a regulatory response of the oligomycin-sensitive ATPase complex to one or more metabolic alterations within the ischemic cells.


ATPase Activity Left Circumflex Coronary Artery Shunt Tube Mitochondrial ATPase Coronary Sinus Ostium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Mittnacht, Jr., S. C. Sherman, and J. L. Farber, Reversal of ischemic mitochondrial dysfunction, J. Biol. Chem. 254: 9871–9878 (1979).PubMedGoogle Scholar
  2. 2.
    L. Mela, L. V. Bacalzo, Jr., and L. D. Miller, Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock, Am. J. Physiol. 220: 571–577 (1971).PubMedGoogle Scholar
  3. 3.
    M. T. Vogt, and E. Farber, On the molecular pathology of ischemic renal death. Reversible and irreversible cellular and mitochondrial metabolic alterations, Am. J. Pathol. 53: 1–26 (1968).PubMedGoogle Scholar
  4. 4.
    W. J. Mergner, S.-H. Chang, L. Marzella, M. W. Kahng, and B. Trump, Studies on the pathogenesis of ischemic cell injury. VIII. ATPase of rat kidney mitochondria, Lab. Invest. 40: 686–694 (1979).PubMedGoogle Scholar
  5. 5.
    A. Kohama, W. A. Boyd, C. M. Ballinger, and I. Ueda, Adenosine triphosphatase activities of subcellular fractions of normal and ischemic muscles, J. Surg. Res. 11: 297–302 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    D. V. Godin, J. M. Tuchek, and M. Moore, Membrane alterations in acute myocardial ischemia, Can. J. Biochem. 58: 777–786 (1980).PubMedGoogle Scholar
  7. 7.
    W. Rouslin, and R. W. Millard, Mitochondrial inner membrane enzyme defects in porcine myocardial ischemia, Am. J. Physiol. 240: H308 - H313 (1981).PubMedGoogle Scholar
  8. 8.
    W. Rouslin, Mitochondrial complexes I, II, III, IV and V in myocardial ischemia and autolysis, Am. J. Physiol. 244: H743 - H748 (1983).PubMedGoogle Scholar
  9. 9.
    W. Rouslin, Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5’-triphosphatase in ischemic and autolyzing cardiac muscle. Possible mechanism for the mitigation of ATP hydrolysis under nonenergizing conditions, J. Biol. Chem. 258: 9657–9661 (1983).PubMedGoogle Scholar
  10. 10.
    W. Kubler, and P. G. Spiekermann, Regulation of glycolysis in the ischemic and the anoxic myocardium, J. Mol. Cell. Cardiol. 1: 351–377 (1970).PubMedCrossRefGoogle Scholar
  11. 11.
    J. R. Neely, J. T. Whitmer, and M. Rovetto, Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts, Circ. Res. 37: 733–741 (1975).PubMedGoogle Scholar
  12. 12.
    A. J. Doorey, and W. M. Barry, The effects of inhibition of oxidative phosphorylation and glycolysis on contractility and high-energy phosphate content in cultured chick heart cells, Circ. Res. 53: 192–201 (1983).PubMedGoogle Scholar
  13. 13.
    P. B. Garlick, G. K. Radda, and P. J. Seeley, Studies on acidosis in the ischemic heart by phosphorus nuclear magnetic resonance, Biochem. J. 184: 547–554 (1979).PubMedGoogle Scholar
  14. 14.
    S. M. Cobbe, and P. A. Poole-Wilson, The time of onset and severity of acidosis in myocardial ischemia, J. Mol. Cell. Cardiol. 12: 745–760 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    M. E. Pullman, and G. C. Monroy, A naturally occurring inhibitor of mitochondrial adenosine triphosphatase, J. Biol. Chem. 238: 3762–3769 (1963).PubMedGoogle Scholar
  16. 16.
    A. Tzagoloff, K. H. Byington, and D. H. MacLennan, Studies on the mitochondrial adenosine triphosphatase. II. The isolation and characterization of an oligomycin-sensitive adenosine triphosphatase from bovine heart mitochondria, J. Biol. Chem. 243: 2405–2412 (1968).PubMedGoogle Scholar
  17. 17.
    S. L. Bonting, K. A. Simon, and N. A. Hawkins, Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat, Arch. Biochem. Biophys. 95: 416–423 (1961).PubMedCrossRefGoogle Scholar
  18. 18.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265–275 (1951).PubMedGoogle Scholar
  19. 19.
    R. J. Van de Stadt, B. L. De Boer, and K. Van Dam, The interaction between the mitochondrial ATPase (F1) and the ATPase inhibitor, Biochim. Biophys. Acta 292: 338–349 (1973).PubMedCrossRefGoogle Scholar
  20. 20.
    K. Schwertzmann, and P. L. Pedersen, Proton-adenosinetriphosphatase complex of rat liver mitochondria: effect of energy state on its interaction with the adenosinetriphosphatase inhibitory peptide, Biochemistry 20: 6305–6311 (1981).CrossRefGoogle Scholar
  21. 21.
    L. L. Horstman, and E. Racker, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXII. Interaction between mitochondrial adenosine triphosphatase inhibitor and mitochondrial adenosine triphosphatase, J. Biol. Chem. 245: 1336–1344 (1970).PubMedGoogle Scholar
  22. 22.
    K. Asami, K. Junttt, and L. Ernster, Possible regulatory function of a mitochondrial ATPase inhibitor in respiratory chain-linked energy transfer, Biochim. Biophys. Acta 205: 307–311 (1970).PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Gazitt, I. Ohad, and A. Loyter, Changes in phospholipid susceptibility toward phospholipase induced by ATP depletion in avian and amphibian erythrocyte membranes, Biochim. Biophys. Acta 382: 65–72 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    T. J. C. Higgins, P. J. Bailey, and D. Allsopp, The influence of ATP depletion on the action of phospholipase c on cardiac myocyte membrane phospholipids, J. Mol. Cell. Cardiol. 13: 1027–1030 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    R. B. Jennings, H. K. Hawkins, J. E. Lowe, M. L. Hill, S. Klotman, and K. A. Reimer, Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog, Am. J. Pathol. 92: 187–214 (1978).PubMedGoogle Scholar
  26. 26.
    R. A. Haworth, D. R. Hunter, and H. A. Berkoff, Contracture in isolated adult rat heart cells. Role of Ca2+, ATP and compartmentation. Circ. Res. 49: 1119–1128 (1981).PubMedGoogle Scholar
  27. 27.
    A. M. Katz, Effects of ischemia on the contractile processes of heart muscle, Am. J. Cardiol. 32: 456–460 (1973).PubMedCrossRefGoogle Scholar
  28. 28.
    O. H. L. Bing, W. W. Brooks, and J. V. Messer, Heart muscle viability following hypoxia: protective effect of acidosis, Science 180: 1292–1298 (1973).CrossRefGoogle Scholar
  29. 29.
    W. G. Nayler, R. Ferrari, P. A. Poole-Wilson, and C. E. Yepez. A protective effect of a mild acidosis on hypoxie heart muscle, J. Mol. Cell. Cardiol. 11: 1053–1071 (1979).PubMedCrossRefGoogle Scholar
  30. 30.
    D. Acosta, and C. P. Li, Actions of extracellular acidosis on primary cultures of rat myocardial cells deprived of oxygen and glucose, J. Mol. Cell. Cardiol. 12: 1459–1463 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • William Rouslin
    • 1
  1. 1.Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations