Advertisement

Sarcomere Length-Tension Relationship in Toad Atrioventricular Pacemaker: Length Dependent Activation

  • José R. López
  • David Lea
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)

Abstract

The relationship between cardiac sarcomere length and force generation has been extensively studied over the years (1,2,3,4). However, the experimental results remain incomplete and the conclusions somehow contradictory.

Keywords

Thin Filament Muscle Length Sarcomere Length Beating Rate Striation Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sonnenblick E.H. Force velocity relations in mammalian heart muscle. Am. J. Physiol. 202: 931–939, 1962.PubMedGoogle Scholar
  2. 2.
    Nilsson E. Influence of muscle length on the mechanical properties of myocardial contraction. Acta Physiol. Scand. 85: 1–23, 1972.PubMedCrossRefGoogle Scholar
  3. 3.
    Pollack G.H., and Huntsman Ll. Sarcomere length-active force relations in living mammalian cardiac muscle. Am. J. Physiol. 227: 383–389, 1974.PubMedGoogle Scholar
  4. 4.
    Julian F., and Sollins M.R. Sarcomere length tension relations in living rat papillary muscle. Circulation Research. 37: 299–308, 1975.PubMedGoogle Scholar
  5. 5.
    Gordon A.M., Huxley, A.F., Julian F.G. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184: 170–192, 1966.PubMedGoogle Scholar
  6. 6.
    Rüdel R., and Taylor S.R. Striated muscle fibers: Facilitation of contraction at short lengths by caffeine. Science 172: 387–388, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Schoenberg M., and Podolsky R. Length-force relation of calcium activated muscle fibers. Science 176: 52–54, 1972.PubMedCrossRefGoogle Scholar
  8. 8.
    López J.R., Waneck L., and Taylor J.R. Skeletal. muscle: Length-dependent effects of potentiating agents. Science 214: 79–82, 1981.PubMedCrossRefGoogle Scholar
  9. 9.
    Taylor S.R., López J.R., Griffiths P.J., Trube G., and Cecchi G. Calcium in excitation-contraction coupling of frog skeletal muscle. Can. J. Physiol. Pharmacol. 60: 489–502, 1982.PubMedCrossRefGoogle Scholar
  10. 10.
    Sugi H., Ohta T. and Tameyasu T. Development of the maximum isometric force at short sarcomere lengths in calcium activated muscle myofibrils. Experientia 39: 147–148, 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Allen D.G., Jewell. B.R., and Murray J.W. The contribution of activation processes to the length-tension relation of cardiac muscle. Nature 248: 606–607, 1974.PubMedCrossRefGoogle Scholar
  12. 12.
    Huntsman L.L., and Stewart D.K. Length dependent calcium inotropism in cat papillary muscle. Circ. Res. 40: 366–371, 1972.Google Scholar
  13. 13.
    Staley N.A., and Benson E.S. The ultrastructure of mammalian cardiac muscle. J. Biophys. Biochem. Cytol. 9: 325–351, 1961.CrossRefGoogle Scholar
  14. 14.
    Sommer J.R., and Johnson E.A. Cardiac muscle. A comparative ultrastructural study with special reference to frog and chicken hearts. Z. Zelifursch. 98: 437–468, 1969.CrossRefGoogle Scholar
  15. 15.
    Sommer J.R., and Johnson E.A. Cardiac muscle. A comparative study of purkinge fibers and ventricular fibers. J. Cell. Biol. 36: 497–526, 1968.PubMedCrossRefGoogle Scholar
  16. 17.
    Huxley H.E. The contractile structure of cardiac and skeletal muscle. Circulation 24: 328–335, 1961.PubMedGoogle Scholar
  17. 18.
    Winegrad S. Resting sarcomere length-tension relation in living frog heart. J. Gen. Physiol. 64: 343–355, 1974.PubMedCrossRefGoogle Scholar
  18. 19.
    Brooks C., McC., Lu H.H., Lange G., Mangi R., Shaw R.B., and Geoly K. Effects on localized stretch of the sino-atrial node region of the dog heart. Am. J. Physiol. 211: 1197–1202, 1966.PubMedGoogle Scholar
  19. 20.
    Deck K.A. Dehnungsversuche an der spezifischen Herz- muskulatur. Arch. Ges. Physiol. 278: 13–14, 1963.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • José R. López
    • 1
  • David Lea
    • 1
  1. 1.Laboratorio de Biofísica del Músculo, Centro de Biofísica y BioquímicaInstituto Venezolano de Investigaciones Científicas IVICCaracasVenezuela

Personalised recommendations