Mitochondrial Transmembrane Proton Electrochemical Potential, Di- and Tricarboxylate Distribution and the Poise of the Malate-Aspartate Cycle in the Intact Myocardium

  • Risto A. Kauppinen
  • J. Kalervo Hiltunen
  • Ilmo E. Hassinen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


The unconditional requirement of closed membrane structures for oxidative energy conversion and conservation in eucaryotes entails the problem of subcellular compartmentation. Although much can be deduced from the in vitro characteristics of the permeability properties of the mitochondrial membranes and the behaviour of enzyme systems in vitro, understanding of the regulation of certain fundamental regulatory phenomena such as mitochondrial respiration has been awaiting data obtained in intact cells and tissues. Methodological progress in the field of metabolic compartmentation has brought into focus the subcellular distribution of effectors and the metabolites related to the tricarboxylic acid cycle.


Mitochondrial Membrane Mitochondrial Membrane Potential Tricarboxylic Acid Cycle Diffusion Potential Equilibrium Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. A. Newsholme and C. Start, “Regulation in Metabolism”, Wiley, London (1973).Google Scholar
  2. 2.
    P. B. Garland, P.J. Randle, and E. A. Newsholme, Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation, Nature 200: 169 (1963).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Cheema-Dhadli, B. H. Robinson, and M. L. Halperin, Proper ties of the citrate transporter in rat heart: implications for regulation of glycolysis by cytosolic citrate, Can. J. Biochem. 54: 561 (1975).Google Scholar
  4. 4.
    D. H. Williamson, P. Lund, and H. A. Krebs, The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem. J. 103: 514 (1967).PubMedGoogle Scholar
  5. 5.
    B. Safer, C. M. Smith, and J. R. Williamson, Control of the transport of reducing equivalents across the mitochondrial membrane in perfused rat heart, J. Mol. Cell. Cardiol2: 111 (1981).CrossRefGoogle Scholar
  6. 6.
    E. A. Siess, D. G. Brocks, and 0. H. Wieland, Distribution of metabolites between the cytosolic and mitochondrial compartments of hepatocytes isolated from fed rats, HoppeSeyler’s Z. Physiol.Chem. 359: 785 (1978).CrossRefGoogle Scholar
  7. 7.
    M. E. Tischler, D. Friedrichs, K. Coll, and J. R. Williamson, Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats, Arch. Biochem. Biophys.184: 222 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Soboll, R. Elbers, R. Scholz, and H.-W. Heldt, Subcellular distribution of di- and tricarboxylates and pH gradients in perfused rat liver,Hoppe-Seyler’s Z. Physiol.Chem. 361: 67 (1980).CrossRefGoogle Scholar
  9. 9.
    R. Elbers, H. W. Heldt, P. Schmucker, S. Soboll, and H. Wiese, Measurement of the ATP/ADP ratio in mitochondria and in the extramitochondrial compartment by fractionation of freeze-stopped liver tissue in non-aqueous media,Hoppe-Seyler’s Z. Physiol.Chem. 355: 378, (1974).CrossRefGoogle Scholar
  10. 10.
    R. A. Kauppinen, J. K. Hiltunen, and I. E. Hassinen, Mitochondrial membrane potential, transmembrane difference in the NAD+ redox potential and the equilibrium of the glutamate-aspartate translocase in the isolated perfused rat heart, Biochim.Biophys. Acta725: 425 (1983).CrossRefGoogle Scholar
  11. 11.
    R. A. Kauppinen, J. K. Hiltunen, and I. E. Hassinen, Sub-cellular distribution of phosphagens in isolated perfused rat heart, FEBS Lett.112: 273 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    R. A. Kauppinen, J. K. Hiltunen, and I. E. Hassinen, Compart mentation of citrate in relation to the regulation of glycolysis and the mitochondrial transmembrane proton electrochemical potential gradient in isolated perfused rat heart, Biochim. Biophys. Acta 681: 286 (1982).CrossRefGoogle Scholar
  13. 13.
    R. Kauppinen, Proton electrochemical potential of the inner mitochondrial membrane in isolated perfused rat hearts, as measured by exogenous probes,Biochim. Biophys.Acta 725: 131 (1983).CrossRefGoogle Scholar
  14. 14.
    R. W. McGilvery and T. W. Murray, Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle, J. Biol. Chem. 249: 5845 (1974).PubMedGoogle Scholar
  15. 15.
    J. K. Hiltunen and I. E. Hassinen, Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase, Biochim. Biophys. Acta 440: 377 (1976).CrossRefGoogle Scholar
  16. 16.
    I. E. Hassinen and K. Hiltunen, Respiratory control in iso lated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system,Biochim. Biophys.Acta 408: 319 (1975).CrossRefGoogle Scholar
  17. 17.
    E. M. Nuutinen, J. K. Hiltunen, and I. E. Hassinen, The glu tamate dehydrogenase system and the redox state of mitochondrial free nicotinamide adenine dinucleotide in myocardium, FEBS Lett. 128: 356 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    R. J. A. Wanders, J. B. Hoek and J. M. Tager, Origin of the ammonia found in protein-free extracts of rat liver mitochondria and rat hepatocytes, Eur. J. Biochem. 110: 197 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Takala, J. K. Hiltunen, and I. E. Hassinen, The mechanism of ammonia production and the effect of mechanical work load on proteolysis and amino acid catabolism in isolated perfused rat heart, Biochem. J. 192: 285 (1980).PubMedGoogle Scholar
  20. 20.
    K. F. Lalloue and A. C. Schoolwerth, Metabolite transport in mitochondria, Ann. Rev. Biochem. 48: 87 (1979).Google Scholar
  21. 21.
    E. M. Nuutinen, Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart, Basic. Res. Cardiol. 79: 49 (1984).CrossRefGoogle Scholar
  22. 22.
    T. -F. Wu and E. J. Davis, Regulation of glycolytic flux in an energetically controlled cell-free system: The effects of adenine nucleotide ratios, inorganic phosphate, pH and citrate, Arch. Biochem. Biophys. 209: 85 (1981).CrossRefGoogle Scholar
  23. 23.
    L. Hue, Role of fructose 2,6-bisphosphate in the regulation of glycolysis, Biochem. Soc. Transact. 11: 246 (1983).Google Scholar
  24. 24.
    H. A. Krebs and R. L. Veech, Pyridine nucleotide interrela tions, in: “The Energy Level and Metabolic Control in Mitochondria”, S. Papa, J. M. Tager, E. Quagliariello, and E. C. Slater, ed., Adriatica Editrice, Bari (1969).Google Scholar
  25. 25.
    P. V. Vignais, Molecular and physiological aspects of adenine nucleotide transport in mitochondria, Biochim. Biophys. Acta 496: 1 (1976).Google Scholar
  26. 26.
    D. F. Wilson, M. Erecinska, and V. L. Schramm, Evaluation of the relationship between the intra- and extramitochondrial [ATP]/[ADP] ratios using phosphoenolpyruvate carboxylkinase,J. Biol. Chem.258: 10464 (1983).PubMedGoogle Scholar
  27. 27.
    A. Alexandre, B. Reynafarje, and A. L. Lehninger, Stoichio metry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria, Proc. Natl. Acad. Sci. U.S.A. 75: 5296 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    G. F. Azzone, T. Pozzan, and S. Massari, Proton electrochemi cal gradient and phosphate potential in mitochondria, Biochim. Biophys. Acta 501: 307 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Risto A. Kauppinen
    • 1
  • J. Kalervo Hiltunen
    • 1
  • Ilmo E. Hassinen
    • 1
  1. 1.Department of Medical BiochemistryUniversity of OuluFinland

Personalised recommendations