Compartmentation and Functional Mechanisms in Myocardial Failure and Myocardial Infarction

  • R. J. Bing
  • Y. Sasaki
  • M. Chemnitius
  • W. Burger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


Compartmentation is a term denoting confinement in space (anatomic compartmentation) and function (functional compartmentation). The result of compartmentation is functional specificity and maintenance of anatomic and functional integrity. Under pathologic conditions, spatial and functional integrity and specificity are obliterated. The extent and specificity of damage to anatomic and functional compartmentation depend on the cause of the pathologic condition. If this cause is well defined, the consequences are also clearly discernible. However, if there are several poorly defined causes, the functional changes are diffuse. Myocardial failure and myocardial infarction are cases in point. In the former, the causes are not clearly defined and thus changes in structure and function are poorly outlined. In myocardial infarction, due to regional ischemia both cause and effect are more easily defined. It is the purpose of this report to describe changes in compartmentation and specific mechanism in two conditions: myocardial failure and myocardial infarction.


Sarcoplasmic Reticulum Global Ischemia Regional Ischemia Myocardial Failure Regional Myocardial Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Bing, Metabolism of the heart, “Harvey Lectures, Series L,” Academic Press, New York (1954–1955).Google Scholar
  2. 2.
    R. J. Bing, C. Wu and S. Gudbjarnason, Mechanism of heart failure, Circ. Res. Suppl. II: 64–69 (1964).Google Scholar
  3. 3.
    R. J. Bing and M. Taeschler, Cardiac failure and cardiac muscle, Cardiologia 21: 283–289 (1952).PubMedCrossRefGoogle Scholar
  4. 4.
    K. Kako and R. J. Bing, Contractility of actomyosin bands prepared from normal and failing human hearts, J. Clin. Invest. 37: 465–470 (1958).PubMedCrossRefGoogle Scholar
  5. 5.
    M. L. Nebel and R. J. Bing, Contractile proteins of normal and failing human hearts, Arch. Int. Med. 111: 190–195 (1963).Google Scholar
  6. 6.
    A. M. Lompre, K. Schwartz, A. D’Albis, G. Lacombe, N. Van Thiem and B. Swynghedauw, Myosin isoenzyme redistribution in chronic heart overload, Nature 282: 105–107 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    Y. Maruyama, R. J. Bing, J. S. M. Sarma and R. Weishaar, The effect of alcohol on active and passive stiffness, and on isometric contractions of glycerinated heart muscle in rats, Jap. Heart J. 19: 513–521 (1978).Google Scholar
  8. 8.
    J. S. M. Sarma, S. Ikeda, R. Fischer, Y. Maruyama, R. Weishaar and R. J. Bing, Biochemical and contractile properties of heart muscle after prolonged alcohol administration, J. Mol. Cell. Cardiol. 8: 951–972 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    R. J. Bing, Cardiac Metabolism: Its contributions to alcoholic heart disease and myocardial failure, Circulation 58: 965–970 (1978).Google Scholar
  10. 10.
    A. M. Katz, Regulation of myocardial contractility 1958–1983: An odyssey, J. Am. Coll. Cardiol. 1: 42–51 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Caroni and E. Carafoli, The Cat+-pumping ATPase of heart sarcolemma, J. Biol. Chem. 256: 3263–3270 (1981).PubMedGoogle Scholar
  12. 12.
    M. Tada and A. M. Katz, Phosphorylation of the sarcoplasmic reticulum and sarcolemma, Ann. Rev. Physiol. 44: 401–423 (1982).CrossRefGoogle Scholar
  13. 13.
    N. S. Dhalla, P. K. Das and G. P. Sharma, Subcellular basis of cardiac contractile failure, J. Mol. Cell. Cardiol. 10: 363–385 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Schwartz, L. A. Sordahl, M. L. Entman, J. C. Allen, Y. S. Reddy, M. A. Goldstein, R. J. Luchi and L. E. Wyborny, Abnormal biochemistry in myocardial failure, Am. J. Cardiol. 32: 407–422 (1973).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Reuter, Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle, J. Physiol. 242: 429–451 (1974).PubMedGoogle Scholar
  16. 16.
    W. F. H. M. Mommaerts, Energetics of muscular contraction, Physiol. Rev. 49: 427–508 (1969).Google Scholar
  17. 17.
    A. Wollenberger and H. Will, Protein kinase-catalyzed membrane phosphorylation and its possible relationship to the role of calcium in the adrenergic regulation of cardiac contraction, Life Sciences 22: 1159–1178 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Tada, M. Inui, M. Yamada, M. Kadoma, T. Kuzuya, H. Abe and S. Kakiuchi, Effects of phospholamban phosphorylation catalyzed by adenosine 3’:5’-monophosphate-and calmodulindependent protein kinases on calcium transport ATPase of cardiac sarcoplasmic retículum, J. Mol. Cell. Cardiol. 15: 335–346 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    P. Caroni, L. Reinlib and E. Carafoli, Charge movements during the Na+-Ca2+ exchange in heart sarcolemmal vesicles, Proc. Natl. Acad. Sci. USA 77: 6354–6358 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    P. V. Sulakhe, N. L. Leung and P. J. St. Louis, Stimulation of calcium accumulation in cardiac sarcolemma by protein kinase, Can. J. Biochem. 54: 438–445 (1976).Google Scholar
  21. 21.
    R. J. Bing, Cardiac perfusion, past and present, in: “Myocardial Ischemia and Lipid Metabolism (Advances in Myocardiology),” A. M. Katz and F. Ferrari, eds., Plenum Press, New York (1984).Google Scholar
  22. 22.
    J. -M. Chemnitius, W. Burger, M. Montllor and R. J. Bing, A cardiac perfusion model for larger mammalian hearts utilizing a perfluorochemical, J. Mol. Cell. Cardiol. (in press).Google Scholar
  23. 23.
    W. Burger, J. -M. Chemnitius, J. Sugihara, R. Navos and R. J. Bing, The effects of a new cardiotonic drug (TA-064) on normal and failing heart preparations, J. Pharmacol. Exp. Therap. (in press).Google Scholar
  24. 24.
    L. R. Jones, S. W. Maddock and H. R. Besch, Unmasking effect of alamethicin on the (Na+,K+)-ATPase, beta-adrenergic receptor-coupled adenylate cyclase, and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles, J. Biol. Chem. 255: 9971–9980 (1980).PubMedGoogle Scholar
  25. 25.
    P. Caroni and E. Carafoli, An ATP-dependent Ca2+-pumping system in dog heart sarcolemma, Nature 283: 765–767 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    J. G. Church and A. K. Sen, Regulation of canine heart sarcolemmal Ca2+-pumping ATPase by cyclic GMP, Biochim. Biophys. Acta 728: 191–200 (1983).CrossRefGoogle Scholar
  27. 27.
    D. A. Walsh, M. S. Clippinger, S. Sivaramakrishnan and T. E. McCullough, Cyclic adenosine monophosphate dependent and independent phosphorylation of sarcolemma membrane proteins in perfused rat heart, Biochemistry 18: 871–877 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    R. Weishaar, J. S. M. Sarma, Y. Maruyama, R. Fischer and R. J. Bing, Regional blood flow, contractility and metabolism in early myocardial infarction, Cardiology 62: 2–20 (1977).PubMedCrossRefGoogle Scholar
  29. 29.
    L. H. Opie, II. Metabolic regulation in ischemia and hypoxia. Effects of regional ischemia on metabolism of glucose and fatty acids, Circulation Res. 38: 52–74 (1976).Google Scholar
  30. 30.
    J. T. Flaherty, M. L. Weisfeldt, B. H. Bulkley, T. J. Gardner, V. L. Gott and W. E. Jacobus, Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance, Circulation 65: 561–571 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    E. S. Williams, J. I. Kaplan, F. Thatcher, G. Zimmerman and S. B. Knoebel, Prolongation of proton spin lattice relaxation times in regionally ischemic tissue from dog hearts, J. Nucl. Med. 21: 449–453 (1980).PubMedGoogle Scholar
  32. 32.
    D. P. Hollis, R. L. Nunally, W. E. Jacobus and G. J. Taylor, Detection of regional ischemia in perfused beating hearts by phosphorous nuclear magnetic resonance, Biochem. Biophys. Res. Commun. 75: 1086–1091 (1977).CrossRefGoogle Scholar
  33. 33.
    S. V. Pande and J. F. Mead, Inhibition of enzyme activities by free fatty acids, J. Biol. Chem. 243: 6180–6185 (1968).PubMedGoogle Scholar
  34. 34.
    A. L. Shug and E. Shrago, A proposed mechanism for free fatty acid effects on energy metabolism of the heart, J. Lab. Clin. Med. 81: 214–218 (1973).PubMedGoogle Scholar
  35. 35.
    P. J. St. Louis and P. V. Sulakhe, Phosphorylation of cardiac sarcolemma by endogenous and exogenous protein kinases, Arch. Biochem. Biophys. 198: 227–240 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. J. Bing
    • 1
  • Y. Sasaki
    • 1
  • M. Chemnitius
    • 1
  • W. Burger
    • 1
  1. 1.Huntington Medical Research InstitutesPasadenaUSA

Personalised recommendations