Organization of the Mitochondrial Matrix

  • Paul A. Srere
  • Balazs Sumegi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


Heart tissue has a high oxidative capacity due to its high content of mitochondria. In addition it is known that the oxidative capacity of mitochondria is correlated to their cristal content and heart mitochondria are known to contain many closely packed cristae. Measures of the inner membrane content (surface area) of heart mitochondria have been made by a number of groups of electron microscopists using stereomorphology (see 1 for review). Their data indicate that a rat heart mitochondrion contains about 60 µm2 of inner membrane surface area for each µm3 of mitochondrial volume. I have shown that these figures are consistent with an average spacing of cristae within a heart mitochondrion of about 150 A2. One can calculate a diameter of 60 A for a spherical protein molecule with a molecular weight of about 80,000. Therefore, it is readily seen that a theoretical construct of a heart mitochondrion would place almost all of the matrix proteins next to the inner membranes.


Mitochondrial Matrix Heart Mitochondrion Pyruvate Dehydrogenase Complex Glycerol Ether Carnitine Acetyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reith, A. Barnard, T., and Rohr, H.-P. Stereology of Cellular Reaction Patterns, CRC Critical Reviews in Toxicology, 4: 219–269 (1976).PubMedGoogle Scholar
  2. 2.
    Srere, P. A. The Structure of the Mitochondrial Inner Membrane-Matrix Compartment, Trends Biochem. Sci., 7: 375–378 (1982).CrossRefGoogle Scholar
  3. 3.
    Srere, P. A. The Infrastructure of the Mitochondrial Matrix, Trends Biochem. Sci., 5: 120–121 (1980).CrossRefGoogle Scholar
  4. 4.
    Hackenbrock, C. R. Chemical and Physical Fixation of Isolated Mitochodnria in Low-Energy and High-Energy States, Proc. Natl. Acad. Sci. 61: 598–605 (1968).PubMedCrossRefGoogle Scholar
  5. 5.
    Minton, A. P. Excluded Volume as a Determinant of Macro- molecular Structure and Reactivity, Biopolymers, 20: 2093–2120 (1981).CrossRefGoogle Scholar
  6. 6.
    Minton, A. P. and Wilf, J. Effect of Macromolecular Crowding upon the Structure and Function of an Enzyme: Glyceraldehyde-3-phosphate Dehydrogenase, Biochemistry, 20: 4821–4826 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    Zimmerman, S. B. and Pheiffer, B. H. Macromolecular Crowding Allows Blunt-end Ligation by DNA Ligases from Rat Liver or Escherichia coli, Proc. Natl. Acad. Sci. USA, 80: 5852–5856 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    Srere, P. A. Protein Crystals as a Model for Mitochondrial Matrix Proteins, Trends Biochem. Sci., 6: 4–6 (1981).CrossRefGoogle Scholar
  9. 9.
    Bishop, W. H. and Richards, F. M. Properties of Liquids in Small Pores, J. Mol. Biol. 38: 315–328 (1968).CrossRefGoogle Scholar
  10. 10.
    Fritz, I. B. “Cellular Compartmentalization and Control of Fatty Acid Metabolism”, Academic Press, New York (1968).Google Scholar
  11. 11.
    Schoolwerth, A. C. and Lalloue, K. F. The Role of Micro- compartmentation in the Regulation of Glutamate Metabolism by Rat Kidney Mitochondria, J. Biol. Chem. 255: 3403–3411 (1980).PubMedGoogle Scholar
  12. 12.
    Loeb, J. “The Organism as a Whole from a Physicochemical Viewpoint”, Knickerbocker Press, New York (1916).CrossRefGoogle Scholar
  13. 13.
    Srere, P. A. and Mosbach, K. Metabolic Compartmentation: Symbiotic, Organnelar, Multienzymic, and Microenvironmental. Ann. Rev. Microbiol. 28: 61–83 (1974).CrossRefGoogle Scholar
  14. 14.
    Welch, G. On the Role of Organized Multienzyme Systems in Cellular Metabolism: A General Synthesis, Prog. Biophys. Molec. Biol. 32: 103–191 (1977).CrossRefGoogle Scholar
  15. 15.
    Srere, P. A. and Estabrook, R. “Editors of Microenvironments and Metabolic Compartmentation”, Academic Press, New York (1978).Google Scholar
  16. 16.
    Srere, P. A., Mattfasson, B., and Mosbach, K. An Immobilized Three-Enzyme System: A Model for Microenvironmental Compartmentation in Mitochondria. Proc. Natl. Acad. Sci. USA 70: 2534–2538 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    Halper, L. A. and Srere, P. A. Interaction between Citrate Synthase and Mitochondrial Malate Dehydrogenase in the Presence of Polyethylene Glycol. Arch. Biochem. Biophys. 184: 529–534.Google Scholar
  18. 18.
    Fahien, L. A. and Kmiotek, E. Complexes between Mitochondrial Enzymes and Either Citrate Synthase or Glutamate Dehydrogenase, J. Biol. Chem. 254: 5983–5990 (1979).PubMedGoogle Scholar
  19. 19.
    Koch-Schmidt, A., Mattiasson, B., and Mosbach, K. Aspects on Microenvironmental Compartmentation, Eur. J. Biochem. 81: 71–78 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    Beeckmans, S. and Kanarek, L. Demonstration of Physical Interactions between Consecutive Enzymes of the Citric Acid Cycle and of the Aspartate-Malate Shuttle, Eur. J. Biochem. 117: 527–535 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    Sumegi, B., Gyocsi, L., and Alkonyi, I. Interaction between the Pyruvate Dehydrogenase Complex and Citrate Synthase, Biochim. Biophys. Acta 616: 158–166.Google Scholar
  22. 22.
    Sumegi, B. and Alkonyi, I. A Study on the Physical Interaction between the Pyruvate Dehydrogenase Complex and Citrate Synthase, Biochim. Biophys. Acta 749: 163–171 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    Porpaczy, Z., Sumegi, B., and Alkonyi, I. Association between the a-Ketoglutarate Dehydrogenase Complex and Succinate Thiokinase, Biochim. Biophys. Acta 749: 172–179 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    Chapman, M. F., Miller, L. R., and Ontko, J. A. Localization of the Enzymes of Ketogenesis in Rat Liver Mitochondria, J. Cell. Biol. 58: 284–306 (1973).PubMedCrossRefGoogle Scholar
  25. 25.
    Brdiczka, D., Pette, D., Brunner, G., and Miller F. Kompartimentierte Verteilung von Enzymen in Rattenlebermitochondrien, Eur. J. Biochem. 5: 294–304 (1968).PubMedCrossRefGoogle Scholar
  26. 26.
    Haddock, B. A., Yates, D. W., and Garland, P. B. The Localization of Some Coenzyme A-Dependent Enzymes in Rat Liver Mitochondria, Biochem. J. 119: 565–573 (1970).PubMedGoogle Scholar
  27. 27.
    Landriscina, C., Papa, S., Coratelli, P., Mazzarella, L., and Quagliariello, E. Enzymatic Activities of the Matrix and Inner Membrane of Pigeon-Liver Mitochondria, Biochim. Biophys. Acta 205: 136–141 (1970).PubMedCrossRefGoogle Scholar
  28. 28.
    Allmann, D. W., Galzigna, L., McCaman, R. E., and Green, D.E. The Membrane Systems of the Mitochondrion, Arch. Biochem. Biophys. 117: 413–419 (1966).PubMedCrossRefGoogle Scholar
  29. 29.
    Wit-Peeters, E. M., Scholte, H. R., Van Den Akker, F., and DeNie, I. Intramitochondrial Localization of Palmityl-CoA Dehydrogenase, ß-Hydroxyacyl-CoA Dehydrogenase and EnoylCoA Hydratase in Guinea-Pig Heart, Biochim. Biophys. Acta 231: 23–31 (1971).PubMedGoogle Scholar
  30. 30.
    Beattie, D. S. The Submitochondrial Distribution of the Fatty Acid Oxidizing System in Rat Liver Mitochondria, Biochem. Biophys. Res. Commun. 30: 57–62 (1968).CrossRefGoogle Scholar
  31. 31.
    Blank, M. L., Cress, E. A., Stephens, N., and Snyder, F. On the Analysis of Long Chain Alkane Diols and Glycerol Ethers in Biochemical Studies, J. Lipid Res. 12: 638–640 (1971).PubMedGoogle Scholar
  32. 32.
    Davidoff, F. and Korn, E. D. The Reactions of trans-a, ß-Hexadecenoyl Coenzyme A and cis-and trans-ß, Y-Hexadecenoyl Coenzyme A Catalyzed by Enzymes from Guinea Pig Liver Mitochondria, J. Biol. Chem. 240: 1549–1558 (1965).PubMedGoogle Scholar
  33. 33.
    Fleming, P. J. and Hajra, A. K. Biosynthesis and Characterization of a Phosphatidic Acid Analog Containing ß-Hydroxy Fatty Acid, Biochem. Biophys. Res. Commun. 55: 743–751.Google Scholar
  34. 34.
    Garland, P. B., Shepherd, D., and Yates, D. W. Steady-State Concentrations of Coenzyme A, Acetyl-Coenzyme A and Long-Chain Fatty Acyl-Coenzyme A in Rat-Liver Mitochondria Oxidizing Palmitate, Biochem. J. 97: 587–594 (1965).PubMedGoogle Scholar
  35. 35.
    Rabinowitz, J. L. and Hercker, E. S. Incomplete Oxidation of Palmitate and Leakage of Intermediary Products during Anoxia, Arch. Biochem. Biophys. 161: 621–627 (1974).PubMedCrossRefGoogle Scholar
  36. 36.
    Stanley, K. K. and Tubbs, P. K. The Role of Intermediates in Mitochondrial Fatty Acid Oxidation, Biochem. J. 150: 77–88 (1975).PubMedGoogle Scholar
  37. 37.
    Olowe, Y. and Schulz, H. Regulation of Thiolases from Pig Heart–Control of Fatty Acid Oxidation in Heart, Eur. J. Biochem. 109: 425–429 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Paul A. Srere
    • 1
    • 2
  • Balazs Sumegi
    • 1
    • 2
  1. 1.Veterans Administration Medical CenterDallasUSA
  2. 2.Department of BiochemistryUniv. of Texas Health Science CenterDallasUSA

Personalised recommendations