Advertisement

Energy Compartmentation and Active Transport in Proximal Kidney Tubules

  • Lazaro J. Mandel
  • Stephen P. Soltoff
  • Peter C. Brazy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)

Abstract

The primary work of the kidney is active transport.1 It is a long-standing observation that a linear relationship exists between the rate of sodium reabsorption by the whole kidney and its rate of oxygen consumption.2,3 Since the oxygen is consumed at the mitochondria and the energy for active transport is used by the Na,K-ATPase located at the plasma membrane on the basolateral side, a basic question in cellular physiology concerns the mechanism whereby the two processes are linked. The answer to this question leads directly to energy compartmentation.

Keywords

Proximal Tubule Sodium Pump Rabbit Kidney Cortical Tubule Proximal Kidney Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. Mandel and R. S. Balaban, Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues, Am. s1. Physiol. 240: F357 - F371 (1981).Google Scholar
  2. 2.
    K. Thurau, Renal Na reabsorption and 02 uptake in dogs during hypoxia and hydrocholorothiazide infusion, Proc. Soc. Exp. Biol. Med. 106:714–717 (1961).Google Scholar
  3. 3.
    G. Torelli, E. Mella, A. Faelli, and S. Costantini, Energy requirements for sodium reabsorption in the in vivo rabbit kidney, AID. J. Physiol. 211: 576–580 (1966).Google Scholar
  4. 4.
    P. Needleman, J. V. Passonnau, and O. H. Lowry, Distribution of glucose and related metabolites in rat kidney, Aia1 Physiol. 215: 655–659 (1968).Google Scholar
  5. 5.
    H. A. Lardy and H. Wellman, Oxidative phosphoryla- tions: role of inorganic phosphate and acceptor systems in control of metabolic rates, Biol. Chem. 195: 215–224 (1952).Google Scholar
  6. 6.
    B. Chance and C. M. Williams, The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Areas Mol. Biol. 17: 65–134 (1956).Google Scholar
  7. 7.
    R. S. Balaban, L. J. Mandel. S. Soltoff, and J. M. Storey, Coupling of Na-K-ATPase activity to aerobic respiratory rate in isolated cortical tubules from the rabbit kidney. Proc. Nat’. Acad. $ci. USA 77: 447–451 (1980).Google Scholar
  8. 8.
    W. E. Jacobus, R. W. Moreadith, and K. M. Vandegaer, Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by {ATP}/{ADP} ratios, J. Biol. Chem. 257: 2397–2402 (1982).PubMedGoogle Scholar
  9. 9.
    R. L. Veech, J. W. Randolph, N. W. Cornell, and H. A. Krebs, Cytosolic phosphorylation potential, J. Biol. Chem. 254: 6538–6547 (1979).Google Scholar
  10. 10.
    S. P. Soltoff and L. J. Mandel, Active ion transport in the renal proximal tubule. I. Transport and metabolic studies, I. Sien. Physiol., in press (1984).Google Scholar
  11. 11.
    T. P. M. Akerboom, H. Bookelman, P. R. Zuurendonk, R. van der Meer, and J. M. Tager, Intramitochondrial and extramitochondrial concentrations of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fasted rats, Eur. J. Biochem. 84: 413–420 (1978).Google Scholar
  12. 12.
    W. D. Schwenke, S. Soboll, H. J. Seitz, and H. Sies, Mitochondrial and cytosolic ATP/ADP ratios in rat liver in vivo, Biochem. I. 200: 405–408 (1981).Google Scholar
  13. 13.
    K. F. Lalloue and A. C. Schoolwerth, Metabolic transport in mitochondria, Ann. Rev. Biochem. 48: 871–922 (1979).Google Scholar
  14. 14.
    R. S. Balaban, Nuclear magnetic resonance studies of epithelial metabolism and function, Fed. Proc. 41: 42–47 (1982).Google Scholar
  15. 15.
    R. S. Balaban, D. G. Gadian, and G. K. Radda, Phosphorus nuclear magnetic resonance study of the rat kidney in vivo, Kidney Int. 20: 575–579 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    S. P. Soltoff and L. J. Mandel, Active ion transport in the renal proximal tubule. III. The ATP dependence of the sodium pump, J. Gen. Physiol., in press (1984).Google Scholar
  17. 17.
    P. L. Jorgensen, Regulation of the (Na+ + K+)-activated ATP hydrolyzing enzyme system in rat kidney. I. The effect of adrenalectomy and the supply of sodium on the enzyme system, Biochim. Biophys. Acta 151: 212–224 (1968).Google Scholar
  18. 18.
    J. M. Braughler and C. N. Corder, Purification of the (Na+ + K4)-adenosine triphosphatase from human renal tissue, Biochim. Biophys. Acta 481: 313–327 (1977).PubMedGoogle Scholar
  19. 19.
    S. I. Harris, L. Patton, L. Barrett, and L. J. Mandel, (Na+, K+)-ATPase kinetics within the intact renal cell, J. Biol. Chem. 257: 6996–7002 (1982).Google Scholar
  20. 20.
    S. R. Gullans, P. C. Brazy, S. P. Soltoff, V. W. Dennis, and L. J. Mandel, Metabolic inhibitors: Effects on metabolism and transport in rabbit proximal tubule, Am. J. Physiol. 243: F133 - F140 (1982).Google Scholar
  21. 21.
    J. Kyte, Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment, J. Cell. Biol. 68: 304–318 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    R. S. Balaban, S. Soltoff, J. M. Storey, and L. J. Mandel, Improved renal cortical tubule suspension: spectrophotometric study of 02 delivery, Am. J. physiol. 238: F50 - F59 (1980).Google Scholar
  23. 23.
    P. C. Brazy, S. R. Gullans, L. J. Mandel, and V. W. Dennis, Metabolic requirement for inorganic phosphate by the rabbit proximal tubule. Evidence for a Crabtree effect, J. Clin. Invest. 70: 53–62 (1982).Google Scholar
  24. 24.
    P. C. Brazy and V. W. Dennis, Characteristics of glucose-phlorizin interactions in isolated proximal tubules, Am. I. Physiol. 234: F279 - F286 (1978).Google Scholar
  25. 25.
    A. Kleinzeller, J. Kolinska, and I. Benes, Transport of monosaccharides in kidney-cortex cells, Biochem. J. 104: 852–860 (1967).Google Scholar
  26. 26.
    A. N. Wick, D. R. Drury, H. J. Nakada, and J. B. Wolfe, Localization of the primary metabolic block produced by 2-deoxyglucose, a. Biol. Chem. 224: 963–969 (1957).Google Scholar
  27. 27.
    P. C. Brazy, L. J. Mandel, S. R. Gullans, and S. P. Soltoff, Interactions between phosphate and oxidative metabolism in proximal renal tubules, AM. J. Physiol., in press (1984).Google Scholar
  28. 28.
    D. Freeman, S. Bartlett, G. Radda, and B. Ross, Energetics of sodium transport in the kidney. Saturation transfer of P-NMR. Biochim. Biophys. Acta 762:325–336 (1983).Google Scholar
  29. 29.
    B. Kaissling and W. Kriz, Structural analysis of the rabbit kidney, Advances in Anatomy Embryology and Cell Bioloas 56: 1–123 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Lazaro J. Mandel
    • 1
  • Stephen P. Soltoff
    • 1
  • Peter C. Brazy
    • 1
  1. 1.Department of Physiology and Division of NephrologyDuke University and Durham VA Medical CentersDurhamUSA

Personalised recommendations