Aspects of Heart Respiratory Control by the Mitochondrial Isozyme of Creatine Kinase

  • William E. Jacobus
  • Koenraad M. Vandegaer
  • Randall W. Moreadith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


The isolation of intact mitochondria by Claude (1,2), the refinements by Hogeboom et. al (3), and the recognition by Kennedy and Lehninger (4) that these organelles were the site of oxidative phosphorylation heralded the modern era of cellular bioenergetics. Shortly thereafter, Siekevitz and Potter (5) and others (6–10) began to explore the regulation of mitochondrial respiratory rates and oxidative phosphorylation. The reason for this rather extended quest is straightforward. As seen in Fig. 1, when intact mitochondria are incubated in respiratory medium, oxygen is consumed at an endogenous rate termed State IV. With substrate and Pi present, the addition of ADP (phosphate acceptor), even at micromolar concentrations, results in a marked stimulation of respiration to near-maximum velocity called State III. From the view of cellular physiology, neither State IV or State III are relevant, since the normal rate of oxygen consumption by a tissue, e.g. the heart, lies between these two in vitro rates. Only under conditions of extreme stress does heart oxygen consumption ever come close to maximum respiratory rates. Therefore, the biologically important issue is to determine how a cell modulates oxygen consumption and, thus, high-energy phosphate production, at intermediate rates. The achievement of this involves the notion of respiratory control.


Creatine Kinase Oxidative Phosphorylation Adenine Nucleotide Respiratory Control Heart Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Claude, Fractionation of mammalian liver cells by differential centrifugation I. Problems, methods and preparation of extract. J. Exp. Med. 84: 51–59 (1946).CrossRefGoogle Scholar
  2. 2.
    A. Claude, Fractionation of mammalian liver cells by differential centrifugation II. Experimental procedures and results. J. Exp. Med. 84: 61–89 (1946).CrossRefGoogle Scholar
  3. 3.
    G. H. Hogeboom, W. C. Schneider and G. E. Palade, Cytochemical studies of mammalian tissues I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J. Biol. Chem. 172: 619–636 (1948).PubMedGoogle Scholar
  4. 4.
    E. P. Kennedy and A. L. Lehninger, Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria. J. Biol. Chem. 179: 957–972 (1949).PubMedGoogle Scholar
  5. 5.
    P. Siekevitz and V. R. Potter, Intramitochondrial regulation of oxidative rate, J. Biol. Chem. 210: 1–13 (1953).Google Scholar
  6. 6.
    H. Niemeyer, R. K. Crane, E. P. Kennedy and F. Lippmann, Observations on respiration and phosphorylation with liver mitochondria of normal, hypo-, and hyperthyroid rats. Fed. Proc. 10: 229 (1951).Google Scholar
  7. 7.
    H. A. Lardy and H. J. Wellman, Oxidative phosphorylations: role of inorganic phosphate and acceptor systems in control of metabolic rates. J. Biol. Chem. 195: 215–224 (1952).PubMedGoogle Scholar
  8. 8.
    M. Rabinovitz, M. P. Stulberg and P. D. Boyer, The control of pyruvate oxidation in a cell-free rat heart preparation by phosphate acceptors. Science 114: 641–642 (1951).PubMedCrossRefGoogle Scholar
  9. 9.
    V. R. Potter, R. O. Recknagel and R. B. Hurlbert, Intracellular enzyme distribution: interpretation and significance. Fed. Proc. 10: 646–653 (1951).PubMedGoogle Scholar
  10. 10.
    W. W. Kielley and R. K. Kielley, Myokinase and adenosinetriphosphatase in oxidative phosphorylation. J. Biol. Chem. 191: 485–500 (1951).PubMedGoogle Scholar
  11. 11.
    B.Chance and G. R. Williams, Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem. 217: 385–393 (1955).Google Scholar
  12. 12.
    M. Klingenberg and E. Pfaff, Structural and functional compartmentation in mitochondria, in: “Regulation of Metabolic Processes in Mitochondria,” J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater, eds., American Elsevier Publishing Co., New York, pp. 180–201 (1966).Google Scholar
  13. 13.
    M. Klingenberg, Zur reversibilitat der oxydativen phosphorylierung. IV. Die beziehung zwischen dem redoxzustand des cytochrome c und dem phyosphorylierungspotential des adenosintriphosphates. Biochem. Zeit. 335: 263–272 (1961).Google Scholar
  14. 14.
    C. S. Owen and D. F. Wilson, Control of respiration by the mitochondrial phosphorylation state. Arch. Biochem. Biophys. 161: 581–591 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    D. F. Wilson, M. Stubbs, R. L. Veech, M. Erecinska and H. A. Krebs, Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions if isolated liver cells. Biochem J. 140: 57–64 (1974).PubMedGoogle Scholar
  16. 16.
    A. Holian, C. S. Owen and D. F. Wilson, Control of respiration in isolated mitochondria: quantitative evaluation of the dependence of respiratory rates on [ATP], [ADP], and [Pi]. Arch. Biochem. Biophys. 181: 164–171 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Nishiki, M. Erecinska and D. F. Wilson, Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart. Am. J. Physiol. 234: C73 - C81 (1978).PubMedGoogle Scholar
  18. 18.
    M. Erecinska, D. F. Wilson and K. Nishiki, Homeostatic regulation of cellular energy metabolism: experimental characterization in vivo and fit to a model. Am. J. Physiol. 234: C82 - C89 (1978).PubMedGoogle Scholar
  19. 19.
    M. Stubbs, P. V. Vignais and H. A. Krebs, Is the adenine nucleotide translocator rate-limiting for oxidative phosphorylation? Biochem J. 172: 333–342 (1978).PubMedGoogle Scholar
  20. 20.
    M. Erecinska, T. Kula and D. F. Wilson, Regulation of energy metabolism: evidence against a primary role of adenine nucleotide translocase. FEBS Lett. 87: 139–144 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    R. van der Meer, T. P. M. Akerboom, A. K. Groen and J. M. Tager, Relationship between oxygen uptake of perfused rat-liver cells and the cytosolic phosphorylation state calculated from indicator metabolites and a redetermined equilibrium constant. Eur. J. Biochem. 84: 421–428 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    D. F. Wilson, M. Erecinska, C. Drown and I. A. Silver, The oxygen dependence of cellular energy metabolism. Arch. Biochem. Biophys. 195: 485–493 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    D. F. Wilson, C. S. Owen and M. Erecinska, Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: a mathematical model. Arch. Biochem. Biophys. 195: 494–504 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Holian and D. F. Wilson, Relationship of transmembrane pH and electrical gradients with respiration and adenosine 5°-triphosphate synthesis in mitochondria. Biochem. 19: 4213–4221 (1980).CrossRefGoogle Scholar
  25. 25.
    E. C. Slater, J. Rosing and A. Mol, The phosphorylation potential generated by respiring mitochondria. Biochim. Biophys. Acta 292: 543–553 (1973).Google Scholar
  26. 26.
    E. J. Davis and L. Lumeng, Relationships between the phosphorylation potentials generated by liver mitochondria and respiratory state under conditions of adenosine diphosphate control. J. Biol. Chem. 250: 2275–2282 (1975).Google Scholar
  27. 27.
    U. Kuster, R. Bohnensack and W. Kunz, Control of oxidative phosphorylation by the extra-mitochondrial ATP/ADP ratio. Biochim. Biophys. Acta 440: 391–402 (1976).PubMedCrossRefGoogle Scholar
  28. 28.
    E. J. Davis and W. I. A. Davis-van Thienen, Control of mitochondrial metabolism by the ATP/ADP ratio. Biochem. Biophys. Res. Commun. 83: 1260–1266 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    R. Bohnensack and W. Kunz, Mathematical model of regulation of oxidative phosphorylation in intact mitochondria. Acta. Biol. Med. Ger. 37: 97–112 (1978).PubMedGoogle Scholar
  30. 30.
    E. N. Christiansen and E. J. Davis, The effects of coenzyme A and carnitine on steady-state ATP/ADP ratios and the rate of long-chain free fatty acid oxidation in liver mitochondria. Biochim. Biophys. Acta 502: 17–28 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    M. Reichert, H. Schaller, W. Kunz and G. Gerber, The dependence on the extramitochondrial ATP/ADP ratio of the oxidative phosphorylation in mitochondria isolated by a new procedure from rat skeletal muscle. Acta. Biol. Med. Ger. 37: 1167–1176 (1978).PubMedGoogle Scholar
  32. 32.
    J. J. Lemasters and A. E. Sowers, Phosphate dependence and atractyloside inhibition of mitochondrial oxidative phosphorylation. The ADP-ATP carrier is rate-limiting. J. Biol. Chem. 254: 1248–1251 (1979).PubMedGoogle Scholar
  33. 33.
    G. Letko and U. Kuster, Competition between extramitochondrial and intramitochondria1 ATP-consuming processes. Acta Biol. Med. Germ. 38: 1379–1385 (1979).PubMedGoogle Scholar
  34. 34.
    C. D. Stoner and H. D. Sirac, Steady-state kinetics of the overall oxidative phosphorylation reaction in heart mitochondria. J. Bioenerg. Biomemb. 11: 113–146 (1979).CrossRefGoogle Scholar
  35. 35.
    R. Bohnensack, Control of energy transformation in mitochondria: Analysis by a quantitative model. Biochim. Biophys. Acta 634: 203–218 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    J. J. H. Ackerman, T. H. Grove, G. G. Wong, D. G. Gadian nd G. K. Radda, Mapping of metabolites in whole animals by P NMR using surface coils. Nature 283: 167–170 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    M. C. Kohn, M. J. Achs and D. Garfinkel, Distribution of adenine nucleotides in the perfused rat heart. Am. J. Physiol. 232: R158 - R163 (1977).PubMedGoogle Scholar
  38. 38.
    R. L. Veech, J. W. R. Lawson, N. W. Cornell and H. A. Krebs, Cytosolic phosphorylation potential. J. Biol. Chem. 254: 6538–5647 (1979).PubMedGoogle Scholar
  39. 39.
    W. E. Jacobus, R. W. Moreadith and K. M. Vandegaer, Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by [ATP]/[ADP] ratios. J. Biol. Chem. 257: 2397–2402 (1982).PubMedGoogle Scholar
  40. 40.
    R. W. Moreadith and W. E. Jacobus, Creatine kinase of heart mitochondria. Functional coupling of ADP transfer to the adenine nucleotide translocase. J. Biol. Chem. 257: 899–905 (1982).PubMedGoogle Scholar
  41. 41.
    F. Gellerich and V. A. Saks, Control of heart mitochondrial oxygen consumption by creatine kinase: the importance of enzyme localization. Biochem. Biophys. Res. Commun. 105: 1473–1481 (1982).PubMedCrossRefGoogle Scholar
  42. 42.
    A. Vercesi, B. Reynafage and A. L. Lehninger, Stoichiometry of H ejection and Ca uptake coupled to electron transport in rat heart mitochondria. J. Biol. Chem. 253: 6379–6385 (1978).PubMedGoogle Scholar
  43. 43.
    W. C. Schneider, Methods for the isolation of particulate components of the cell, in: “Manometric Techniques,” W. W. Umbreit, R. Burris and F. J. Stauffer, eds. Burgess Publishing Co., Minneapolis, Chapter 11 (1972).Google Scholar
  44. 44.
    M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 12: 248–254 (1976).CrossRefGoogle Scholar
  45. 45.
    J. M. Tager, R. J. A. Wanders, A. K. Groen, W. Kunz, R. Bohnensack, U. Kuster, G. Letko, G. Bohme, J. Duszynski and L. Wojtczak, Control of mitochondrial respiration. FEBS Letters 151: 1–9 (1983).PubMedCrossRefGoogle Scholar
  46. 46.
    E. Pfaff and M. Klingenberg, Adenine nucleotide translocation of mitochondria. 1. Specificity and control. European J. Biochem. 6: 66–79 (1968).CrossRefGoogle Scholar
  47. 47.
    W. E. Jacobus and A. L. Lehninger, Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J. Biol. Chem. 248: 4803–4810 (1973).PubMedGoogle Scholar
  48. 48.
    V. A. Saks, N. V. Lipina, V. N. Smirnov and E. I. Chazov, Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase: Kinetic evidence. Arch. Biochem. Biophys. 173: 34–41 (1976).PubMedCrossRefGoogle Scholar
  49. 49.
    V. A. Saks, E. K. Seppet and V. N. Smirnov, Does oxidative phosphorylation increase the rate of creatine phosphate synthesis in heart mitochondria or not? J. Mol. Cell. Card. 11: 1265–1273 (1979).CrossRefGoogle Scholar
  50. 50.
    V. A. Saks, V. V. Kupriyanov, G. V. Elizarova and W. E. Jacobus, Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation. J. Biol. Chem. 255: 755–763 (1980).PubMedGoogle Scholar
  51. 51.
    W. E. Jacobus and V. S. Saks, Creatine kinase of heart mitochondria: Changes in its kinetic properties induced by coupling to oxidative phosphorylation. Arch. Biochem. Biophys. 219: 167–178 (1982).PubMedCrossRefGoogle Scholar
  52. 52.
    W. C. T. Yang, P. J. Geiger, S. P. Bessman and B. Borrebaek, Formation of creatine phosphate from creatine and 32P-labeled ATP by isolated rabbit heart mitochondria. Biochem. Biophys. Res. Commun. 76: 882–887 (1977).PubMedCrossRefGoogle Scholar
  53. 53.
    R. A. DeFuria, J. S. Ingwall, E. T. Fossel and M. K. Dygert, Microcompartmentation of the mitochondrial creatine kinase reaction, in: “Heart creatine kinase: The integration of isozymes for energy distribution,” W. E. Jacobus and J. S. Ingwall, eds., Williams and Wilkins, Baltimore, pp. 135–141 (1980).Google Scholar
  54. 54.
    R. A. Altschuld and G. P. Brierley, Interaction between the creatine kinase of heart mitochondria and oxidative phosphorylation. J. Mol. Cell. Card. 9: 875–896 (1977).CrossRefGoogle Scholar
  55. 55.
    B. Borrebaek, The lack of direct coupling between ATP-ADP translocase and creatine phosphokinase in isolated rabbit heart mitochondria. Arch. Biochem. Biophys. 203: 827–829 (1980).PubMedCrossRefGoogle Scholar
  56. 56.
    K. Mosbach, The microenviornment of immobilized multistep enzyme systems, in: “Microenviornments and metabolic compartmentation,” P. A. Srere and R. W. Estabrook, eds, Academic Press, New York, pp. 381–400 (1978).Google Scholar
  57. 57.
    K. M. Vandegaer and W. E. Jacobus, Evidence against direct transfer of the adenine nucleotides by the heart mitochondrial creatine kinase-adenine nucleotide translocase complex. Biochem. Biophys. Res. Commun. 109: 442–448 (1982).PubMedCrossRefGoogle Scholar
  58. 58.
    S. Erickson-Viitanen, P. J. Geiger, P. Viitanen and S. P. Bessman, Compartmentation of mitochondrial creatine phosphokinase. II. The importance of the outer mitochondrial membrane for mitochondrial compartmentation. J. Biol. Chem. 257: 14405–14411 (1982).PubMedGoogle Scholar
  59. 59.
    A. K. Groen, R. J. A. Wanders, H. V. Westerhoff, R. v. d. Meer and J. M. Tager, Quantification of the contribution of various steps to the control of mitochondrial respiration. J. Biol. Chem. 257: 2754–2757 (1982).PubMedGoogle Scholar
  60. 60.
    R. Heinrich and T. A. Rapoport, A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42: 89–95 (1974).PubMedCrossRefGoogle Scholar
  61. 61.
    R. Heinrich and T. A. Rapoport, A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur. J. Biochem. 42: 97–105 (1974).PubMedCrossRefGoogle Scholar
  62. 62.
    T. A. Rapoport, R. Heinrich, G. Jacobasch and S. Rapoport, A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. Eur. J. Biochem. 42: 107–120 (1974).PubMedCrossRefGoogle Scholar
  63. 63.
    H. Kacser and J. J. Burns, Molecular democracy: Who shares the controls? Biochem. Soc. Trans. 7: 1149–1160 (1979).PubMedGoogle Scholar
  64. 64.
    M. Erecinska, M. Stubbs, Y. Miyata, C. M. Ditre and D. F. Wilson, Regulation of cellular metabolism by intracellular phosphate. Biochim. Biophys. Acta 462: 20–35 (1977).PubMedCrossRefGoogle Scholar
  65. 65.
    D. F. Wilson, C. S. Owen and A. Holian, Control of mitochondrial respiration: A quantitative evaluation of the roles of cytochrome c and oxygen. Arch. Biochem. Biophys. 182: 749–762 (1977).PubMedCrossRefGoogle Scholar
  66. 66.
    P. Schonfeld and U. Kuster, Functional investigations of isolated mitochondria under steady-state conditions by means of a perifusion technique. Acta Biol. Med. Germ. 38: 1307–1314 (1979).PubMedGoogle Scholar
  67. 67.
    G. Letko, U. Kuster, J. Duszynski and W. Kunz, Investigation of the dependence of the intramitochondrial [ATP]/[ADP] ratio on the respiration rate. Biochim. Biophys. Acta 593: 196–203 (1980).PubMedCrossRefGoogle Scholar
  68. 68.
    F. Brawand, G. Folly and P. Walter, Relation between extra-and intramitochondrial ATP/ADP ratios in rat liver mitochondria. Biochim. Biophys. Acta 590: 285–289 (1980).PubMedCrossRefGoogle Scholar
  69. 69.
    G. K. Asimakis and J. R. Aprille, In vitro alteration of the size of the liver mitochondrial adenine nucleotide pool: Correlation with respiratory functions. Arch. Biochem. Biophys. 203: 307–316 (1980).PubMedCrossRefGoogle Scholar
  70. 70.
    W. Kunz, R. Bohnensack, G. Bohme, U. Kuster, G. Letko and P. Schonfeld, Relations between extramitochondrial and intramitochondrial adenine nucleotide systems. Arch. Biochem. Biophys. 209: 219–229 (1981).PubMedCrossRefGoogle Scholar
  71. 71.
    U. Kuster, G. Letko, W. Kunz, J. Duszynsky, K. Bogucka and L. Wojtczak, Influence of different energy drains on the interrelationship between the rate of respiration, proton-motive force and adenine nucleotide patterns in isolated mitochondria. Biochim. Biophys. Acta 636: 32–38 (1981).PubMedCrossRefGoogle Scholar
  72. 72.
    D. F. Wilson and N. G. Forman, Mitochondrial transmembrane pH and electrical gradients: Evaluation of their energy relationships with respiratory rate and adenosine 5-triphosphate synthesis. Biochemistry 21: 1438–1444 (1982).PubMedCrossRefGoogle Scholar
  73. 73.
    N. G. Forman and D. F. Wilson, Energetics and stoichiometry of oxidative phosphorylation from NADH to cytochrome c in isolated rat liver mitochondria. J. Biol. Chem. 257: 12908–12915 (1982).PubMedGoogle Scholar
  74. 74.
    N. G. Forman and D. F. Wilson, Dependence of mitochondrial oxidative phosphorylation on activity of the adenine nucleotide translocase. J. Biol. Chem. 258: 8649–8655 (1983).PubMedGoogle Scholar
  75. 75.
    P. M. Matthews, J. L. Bland, D. G. Gadian and G. K. Radda, The steady-state rate of ATP synthesis in the perfused rat heart measured by 31P NMR saturation transfer. Biochem. Biophys. Res. Commun. 103: 1052–1059 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • William E. Jacobus
    • 1
  • Koenraad M. Vandegaer
    • 2
  • Randall W. Moreadith
    • 2
  1. 1.Division of Cardiology 538 Carnegie BuildingThe Johns Hopkins HospitalBaltimoreUSA
  2. 2.Departments of Medicine and Physiological ChemistryThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations