A Role for Mitochondria in Myocardial Adenosine Production

  • Richard D. Bukoski
  • Harvey V. Sparks
  • Leena M. Mela-Riker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


It is now generally accepted that the purine nucleoside, adenosine, is a potent modulator of cardiac function. For instance, adenosine probably participates in the regulation of coronary blood flow (Berne and Rubio, 1979) and Bellardinelli et al (1982) have demonstrated that adenosine decreases the rate of sinoatrial node depolarization and the rate of conduction through the atrioventricular node. Schrader et al (1977) have shown that adenosine decreases cyclic AMP mediated increases in inotropy caused by isoproterenol treatment. Finally, it has been shown that adenosine limits norepinephrine release from sympathetic nerve endings (Verhaege, 1978). It is possible that during periods of increased oxygen demand or mild ischemia, adenosine may cause an increase in coronary blood flow to meet the increased oxygen demand. Under more severe periods of anoxia or ischemia, adenosine may have negative inotropic and chronotropic effects, reducing myocardial oxygen needs and thus having a protective effect. A similar mechanism of action for the cardioprotective effect of calcium channel blockers has recently been proposed (Cheung et al, 1984).


Coronary Blood Flow Microsomal Fraction Mitochondrial Fraction Mitochondrial Matrix Purine Nucleoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellardinelli, L., Fenton, R., West, A., Linden, J. and Berne, R.M., 1982, Extracellular action of adenosine and antagonism by aminophylline on the atrioventricular conduction in isolated perfused guinea pig and rat heart, Circ. Res., 51:569.Google Scholar
  2. Berne, R.. and Rubio, R., 1979, Coronary circulation, in: “Handbook of Physiology, the Cardiovascular System”, R.M. Berne and N. Sperelakis, eds., American Physiological Society, Washington, p. 873.Google Scholar
  3. Berne, R.M., 1980, The role of adenosine in the regulation of coronary blood flow, Circ. Res., 47:807.PubMedGoogle Scholar
  4. Bunger, R., Soboll, S. and Permanetter, B., 1983, Effects of norepinephrine on coronary flow, myocardial subsrate utilization, and subcellular adenylates, in: “Ca2+ - Entry Blockers, Adenosine and Neurohumors”, G.F. Merrill and H.R. Weiss, eds., Urban and Schwarzenberg, Baltimore, p. 267.Google Scholar
  5. Bukoski, R.D., Sparks, H.V. and Mela, L.M., 1983, Rat heart mitochondria release adenosine. Biochem. Biophys. Res. Comm., 113:990.Google Scholar
  6. Cheung, J.Y., Leaf, A. and Bonventre, J.V., 1984, Mechanism of protection of verapamil and nifedipine from anoxia injury in isolated cardiac myocytes, Am. J. Physiol., 240:C323.Google Scholar
  7. Clark, M.G., Patten, G.S. and Filsell, O.H., 1982, Evidence for an α— adrenergic receptor—mediated control of energy production in heart. J. Molec. Cell. Cardiol., 14:313.CrossRefGoogle Scholar
  8. DeWitt, D.F., Wangler, R.D., Thompson, C.I. and Sparks, H.V., 1983, Phasic release of adenosine during steady state metabolic stimulation in the isolated guinea pig heart, Circ. Res., 53:636.PubMedGoogle Scholar
  9. Erecinska, M. and Wilson, D.F., 1982, Regulation of cellular energy metabolism, J. Membrane Biol., 70:1.CrossRefGoogle Scholar
  10. Frick, G.P., Lowenstein, J.M., 1978, Vectorial production of adenosine by 5′—nucleotidase in the perfused rat heart, J. Biol. Chem., 253:1240.PubMedGoogle Scholar
  11. Lowenstein, J.M., Yu, M.-K. and Naito, Y., 1983, Regulation of adenosine metabolism by 5′—nucleotidases, in: “Regulatory Function of Adenosine”, R.M. Berne, T.W. Rall and R. Rubio, eds., Martinus Nijhoff, Boston, p. 117.Google Scholar
  12. Manfredi, J.P. and Sparks, H.V., 1982, Adenosine’s role in coronary vasodilation induced by atrial pacing and norepinephrine. Am. J. Physiol., 243:H536.PubMedGoogle Scholar
  13. Nuutinen, E.M., Nishiki, K., Erecinska, M. and Wilson, D.F., 1982, Role of mitochondrial oxidative phosphorylation in regulation of coronary blood flow, Am. J. Physiol., 243:H159.PubMedGoogle Scholar
  14. Nuutinen, E.M., Nelson, D., Wilson, D.F. and Erecinska, M. Regulation of coronary blood flow: effects of 2,4-dinitrophenol and theophylline. Am. J. Physiol., 244:H369.Google Scholar
  15. Olsson, R.A., Saito, D. and Steinhardt, C.R., 1982, Compartmentalization of the adenosine pool of dog and rat hearts, Circ. Res., 50:617.PubMedGoogle Scholar
  16. Rockstein, M., Herron, P.W., 1951, Colorimetric determination of inorganic phosphate in microgram quantities, Anal. Chem., 23:1500.CrossRefGoogle Scholar
  17. Rubio, R. and Berne, R.M., 1975, Regulation of coronary blood flow, Prog. Cardiovasc. Dis., 18:105.PubMedCrossRefGoogle Scholar
  18. Schrader, J. and Gerlach, E., 1976, Compartmentation of cardiac adenine nucleotides and formation of adenosine, Pflugers Arch., 367:129.PubMedCrossRefGoogle Scholar
  19. Schrader, J., Baumann, G. and Gerlach, E., 1977, Adenosine as an inhibitor of mitocardial effects of catecholamines, Pfleugers Arch. 372:29.CrossRefGoogle Scholar
  20. Schrader, J., Schutz, W. and Bardenheuer, H., 1981, Role of S-adenosyl homocysteine hydrolase in adenosine metabolism in mammalian heart, Biochem. J., 196:65.PubMedGoogle Scholar
  21. Schutz, W., Schrader, J. and Gerlach, E., 1981, Different sites of adenosine formation in the heart, Am. J. Physiol., 240:H963.PubMedGoogle Scholar
  22. Steiner, A.L., 1974, Assay of cyclic nucleotides by radioimmunoassay methods, Methods Enzymol., 38:96.PubMedCrossRefGoogle Scholar
  23. Tager, J.M., Wanders, R.J.A., Groen, A.K., Kunz, W., Bohnensack, R., Kuster, U., Letko, G., Bohne, G., Duszynski, J. and Wojczak, L., 1983, Control of mitochondrial respiration, FEBS Lett., 151:1.PubMedCrossRefGoogle Scholar
  24. Verhaege, R.H., Lorenz, R.R., McGrath, M.A., Shepherd, J.T. and Vanhoutte, P.M., 1978, Metabolic modulation of neurotransmitter release-adenosine, adenine nucleotides, potassium, hyperosmolarity and hydrogen ion, Fed. Proc., 37:208.Google Scholar
  25. Wilson, D.F., Erecinska, M., Drown, C. and Silver, I.A., 1978, The oxygen dependence of cellular energy metabolism, Arch. Biochem. Biophys., 195:485.CrossRefGoogle Scholar
  26. Wilson, D.F., Erecinska, M. and Schramm, V.L., 1983, Evaluation of the relationship between intra- and extramitochondrial [ATP]/[ADP] ratios using phosphoenolpyruvate carboxykinase, J. Biol. Chem. 258:10464.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Richard D. Bukoski
    • 1
  • Harvey V. Sparks
    • 1
  • Leena M. Mela-Riker
    • 2
  1. 1.Department of PhysiologyMichigan State UniversityEast LansingUSA
  2. 2.Department of SurgeryOregon Health Sciences UniversityPortlandUSA

Personalised recommendations