The Physiological Significance of the Creatine Phosphate Shuttle

  • Samuel P. Bessman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 194)


The creatine phosphate shuttle1 is a mechanism found in highly developed cells which carries out an intercommunication process to signal the demand for energy and to transport the energy produced in response to the signal to those sites where energy is being utilized.


Creatine Kinase Creatine Phosphate Muscle Protein Synthesis Creatine Phosphokinase Intermembrane Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.P. Bessman and C.L. Carpenter, The Creatine Phosphate Energy Shuttle, in: Vol.54, “Annual Review of Biochemistry,” Annual Reviews, Palo Alto, CA (1985).Google Scholar
  2. 2.
    R.L. Veech, J.W.R. Lawson, N.W. Cornell, and H.A. Krebs, Cytosolic Phosphorylation Potential, J. Biol. Chem. 254: 6538 (1979).PubMedGoogle Scholar
  3. 3.
    S.P. Bessman, Diabetes Mellitus: Observations, Theoretical and Practical, J. Pediatr. 56: 191 (1960).PubMedCrossRefGoogle Scholar
  4. 4.
    S.P. Bessman, Fat Metabolism, A Contribution to the Mechanism of Diabetes Mellitus, in: “Fat Metabolism,” V.A. Najjar, ed., The Johns Hopkins Press, Baltimore, MD (1966).Google Scholar
  5. 5.
    S.P. Bessman, A Molecular Basis for the Mechanism of Insulin Action, Amer. J. Med. 40: 740 (1966).PubMedCrossRefGoogle Scholar
  6. 6.
    S.P. Bessman, The Hexokinase-Mitochondrial Binding Theory of Insulin Action, in: “Energy, Biosynthesis and Regulation in Molecular Biology,” D. Richter, ed., Walter de Gruyter Verlag, Berlin, New York (1974).Google Scholar
  7. 7.
    S.P. Bessman, B. Borrebaek, P.J. Geiger, and S. Ben-Or, Mitochondrial Creatine Kinase and Hexokinase - Two Examples of Compartmentation Predicted by the Hexokinase Mitochondrial Binding Theory of Insulin Action, in: “Microenvironments and Cellular Compartmentation,” P. Srere and R.W. Estabrook, eds., Academic Press, Inc., New York (1978).Google Scholar
  8. 8.
    F. Lipmann and O. Meyerhof, Uber die Reaktionsänderung des tätigen Muskels, Biochem. Z. 227: 84 (1930).Google Scholar
  9. 9.
    V.A. Belitzer and E.T. Tsbakova, Phosphorylation as Related to Respiration, Biokhimiya 4: 516 (1939).Google Scholar
  10. 10.
    H. Jacobs, H.W. Heldt, and M. Klingenberg, High Activity of Creatine Kinase in Mitochondria from Muscle and Brain and Evidence for a Separate Mitochondrial Isoenzyme of Creatine Kinase, Biochem. Biophys. Res. Commun. 16: 516 (1964).PubMedCrossRefGoogle Scholar
  11. 11.
    S.P. Bessman and A. Fonyo, The Possible Role of the Mitochondrial Bound Creatine Kinase in Regulation of Mitochondrial Respiration, Biochem. Biophys. Res. Commun. 22: 597 (1966).CrossRefGoogle Scholar
  12. 12.
    W.E. Jacobus and A.L. Lehninger, Creatine Kinase of Rat Heart Mitochondria: Coupling of Creatine Phosphorylation to Electron Transport, J. Biol. Chem. 248: 4803 (1973).PubMedGoogle Scholar
  13. 13.
    D.C. Turner, T. Wallimann, and H.M. Eppenberger, A Protein That Binds Specifically to the M-line of Skeletal Muscle is Identified as the Muscle Form of Creatine Kinase, Proc. Natl. Acad Sci. (USA) 70: 702 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Wallimann, D.C. Turner, and H.M. Eppenberger, Localization of Creatine Kinase Isoenzymes in Myofibrils, J. Cell Biol. 75: 297 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    O.S. Herasymowych, R.S. Mani, C.M. Kay, R.D. Bradley, and D.G. Scraba, Ultrastructure Studies on the Binding of Creatine Kinase and the 165,000 Molecular Weight Component to the M-band of Muscle, J. Mol. Biol. 136: 193 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    J. Botts, D.B. Stone, A.T.L. Wang, and R.A. Mendelson, Electron Paramagnetic Resonance and Nanosecond Fluorescence Depolarization Studies on Creatine-phosphokinase Interaction with Myosin and Its Fragments, J. Supramol. Struct. 3: 141 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    W.C.T. Yang, P.J. Geiger, S.P. Bessman, and B. Borrebaek, Formation of Creatine Phosphate from Creatine and 32P-labeled ATP by Isolated Rabbit Heart Mitochondria, Biochem. Biophys. Res. Commun. 76: 882 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Erickson-Viitanen, P. Viitanen, P.J. Geiger, W.C.T. Yang, and S.P. Bessman, Compartmentation of Mitochondrial Creatine Phosphokinase. I. Direct Demonstration of Compartmentation with the Use of Labeled Precursors, JBC 257: 14395 (1982).Google Scholar
  19. 19.
    V.A. Saks, G.B. Chernousova, I. Voronokov, V.N. Smirnov, and E.I. Chazov, Energy Transport Mechanism in myocardial cells. Circ. Res. Supl. III, 34, 35; III - 138, III-148 (1974).Google Scholar
  20. 20.
    V.A. Saks, G.B. Chernousova, D.E. Gukovsky, V.N. Smirnov, and E.I. Chazov, Energy Transport in k;eart Cells. Mitochondrial isoenzyme of creatine phosphokinase. Kinetic Properties and Regulatory Action of Magnesium (2+) Ions, Eur. J. Biochem. 57: 273 (1975).CrossRefGoogle Scholar
  21. 21.
    V.A. Saks, V.V. Kupriyanov, G. Elizarova, and W.E. Jacobus, Studies of Energy Transport in Heart Cells, the Importance of Creatine Kinase Localization for the Coupling of Mitochondrial Phosphorylcreatine Production to Oxidative Phosphorylation, J. Biol. Chem. 255: 755 (1980).PubMedGoogle Scholar
  22. 22.
    S.V. Perry, Creatine Phosphokinase and the Enzymic and Contractile Properties of the Isolated Myofibril, Biochem. J. 57: 427 (1954).PubMedGoogle Scholar
  23. 23.
    W.F.H.M. Mommaerts, Is Adenosine Triphosphate Broken Down During a Single Muscle Twitch?, Nature 174: 1083 (1954).PubMedCrossRefGoogle Scholar
  24. 24.
    D.K. Hill, Preferred Sites of Adenine Nucleotide in Frog’s Striated Muscle, J. Physiol. (London) 153: 433 (1960).Google Scholar
  25. 25.
    D.F. Cain and R.E. Davies, Breakdown of Adenosine Triphosphate During a Single Contraction of Working Muscle, Biochem. Biophys. Res. Commun. 8: 361 (1962).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Erickson-Viitanen, P.J. Geiger, P. Viitanen, and S.P. Bessman, Compartmentation of Mitochondrial Creatine Phosphokinase. II. The Importance of the Outer Mitochondrial Membrane for Mitochondrial Compartmentation, JBC 257: 14405 (1982).Google Scholar
  27. 27.
    F. Savabi, P.J. Geiger, and S.P. Bessman, Kinetic Properties and Functional State of Creatine Phosphokinase in Glycerinated Muscle Fibers - Further Evidence for Compartmentation, Biochem. Biophys. Res. Commun. 114: 785 (1983).Google Scholar
  28. 28.
    F. Savabi, P.J. Geiger, and S.P. Bessman, Myofibrillar End of the Creatine Phosphate Energy Shuttle, Amer. J. Physiol. 247: C424 (1984).PubMedGoogle Scholar
  29. 29.
    S. Gudbjarnason, P. Mathes, and K.A. Ravens, Functional Compartmentation of ATP and Creatine Phosphate in Heart Muscle, J. Mol. Cell. Cardiol. 1: 325 (1970).PubMedCrossRefGoogle Scholar
  30. 30.
    C.L. Carpenter, C. Mohan, and S.P. Bessman, Inhibition of Protein and Lipid Synthesis in Muscle, by 2,4-Dinitrofluorobenzene, an Inhibitor of Creatine Phosphokinase, Biochem. Biophys. Res. Commun. 111: 884 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    C.L. Carpenter, C. Mohan, and S.P. Bessman, Necessity of the Creatine Phosphate Shuttle for Muscle Protein Synthesis (Submitted for publication, 1984 ).Google Scholar
  32. 32.
    C.L. Carpenter, F. Savabi, and S.P. Bessman, Protein Synthesis by Isolated Skeletal Muscle Polysomes: A Terminal for the Creatine Phosphate Shuttle (Submitted for publication, 1984 ).Google Scholar
  33. 33.
    S.P. Bessman and N. Pal, The Krebs Cycle Depletion Theory of Hepatic Coma, in “The Urea Cycle,” S. Grisolia, R. Baguena and F. Mayor, eds., John Wiley & Sons, Inc., New York (1976).Google Scholar
  34. 34.
    S.P. Bessman and N. Pal, Ammonia Intoxication: Energy Metabolism and Brain Protein Synthesis, Isr. J. Med. Sci. 18: 171 (1982).PubMedGoogle Scholar
  35. 35.
    V.G. Sharov, V.A. Saks, V.N. Smirov, and E.I. Chazov, An Electron Microscopic Ïistochemical Investigation of the Localization of Creatine Phosphokinase in Heart Muscle, Biochim. Biophys. Acta 468: 495 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    D.O. Levitsky, T.S. Levchenko, V.A. Saks, V.G. Sharov, and V.N. Smirov, The Role of Creatine Phosphokianse in Supplying Energy for the Calcium Pump System of Heart Sarcoplasmic Reticulum, Membr. Biochem. 2: 81 (1978).CrossRefGoogle Scholar
  37. 37.
    V.A. Saks, N.V. Lipina, V.G. Sharov, V.N. Smirnov, E. Chazov, and R. Grosse, The Localization of the MM Isoenzyme of Creatine Phosphokinase on the Surface Membrane of Myocardial Cells and its Functional Coupling to Ouabain-inhibited (sodium—potassium) Ion-dependent ATPase, Biochim. Biophys. Acta 465: 550 (1977).PubMedCrossRefGoogle Scholar
  38. 38.
    S.P. Bessman and P.J. Geiger, The Transport of Energy in Muscle - The Phosphorylcreatine Shuttle, Science 211: 448 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Samuel P. Bessman
    • 1
  1. 1.Department of Pharmacology and NutritionUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations