The New World Primates as Animal Models of Glucocorticoid Resistance

  • George P. Chrousos
  • D. Lynn Loriaux
  • Masako Tomita
  • David D. Brandon
  • David Renquist
  • Barry Albertson
  • Mortimer B. Lipsett
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 196)


Many New World primate species have greatly increased plasma cortisol concentrations, decreased plasma cortisol binding globulin capacity and affinity, marked resistance of the hypothalamicpituitary-adrenal axis to suppression by dexamethasone, and no biological evidence of glucocorticoid excess. These primates also have high levels of circulating progesterone, estrogen, mineralocorticoid, androgen and vitamin D. The glucocorticoid target tissues that have been examined (circulating mononuclear lymphocytes and cultured skin fibroblasts) have normal concentrations of glucocorticoid receptors with decreased affinity for dexamethasone. Transformation of B-lymphocytes with the Epstein-Barr virus leads to glucocorticoid receptor induction that is less than that observed with cells from Old World primates. The receptor in these cells has a low affinity for dexamethasone. The low affinity leads to an increased loss of specific bound ligand during thermal activation. Meroreceptor generation is normal. The molecular weight of the receptor, determined by SDS-PAGE, is similar to that of Old World primates (~92,000) and the activation pattern per se, examined in vitro by heating cytosol and performing phosphocellulose chromatography, appears similar to that of human controls. The ratios of nuclear to cytosolic hormone-receptor-complexes and of cytosolic activated to unactivated receptor complexes in intact cells are similar to Old World primates. Results from mixing studies do not support the hypothesis that a binding inhibitor(s) or a deficient cytosolic positive modifier(s) of binding unerlies the findings in these primates. The New World primates, unlike men with the syndrome of primary cortisol resistance, have compensated for their condition with intra—adrenal and mineralocorticoid receptor adaptations. Thus, unlike Old World primates, cortisol in New World primates has only weak sodium—retaining potency because the aldosterone receptor has a low affinity for cortisol. The common element that would explain the apparent resistance to six steroid hormones in New World primates remains unknown.


Glucocorticoid Receptor Plasma Cortisol Mineralocorticoid Receptor Cynomolgus Monkey World Monkey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Griffin, D. J. Wilson, The syndromes of androgen resistance. N. Engl. J. Med. 302: 198 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    D. B. Cheek, J. W. Perry, A salt wasting syndrome in infancy. Arch. Dis. Child. 33: 252 (1958).PubMedCrossRefGoogle Scholar
  3. 3.
    D. W. Keller, W. G. Wiest, F. B. Askin, L. W. Johnson, R. C. Stickler, Pseudocorpus luteum insufficiency: a local defect of progesterone action on endometrial stroma. J. Clin. Endocrinol. Metab. 48: 127 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    M. H. Brooks, N. H. Bell, L. Klove, P. H. Stern, E. Orfei, S. F. Queener, A. J. Hamstra, H. F. DeLuca, Vitamin-D dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N. Engl. J. Med. 298: 996 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    A. J. Hogson, J. W. Funder, Glucocorticoid receptors in the guinea pig. Am. J. Physiol. 235: R115 (1978).Google Scholar
  6. 6.
    N. Kraft, A. J. Hogson, J. W. Funder, Glucocorticoid receptor and effector mechanisms: A comparison of the corticosensitive mouse with the corticoresistant guinea pig. Endocrinology 104: 344 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    G. P. Chrousos, A. Vingerhoeds, D. Brandon, C. Eil, M. Pugeat, M. DeVroede, D. L. Loriaux and M. B. Lipsett, Primary cortisol resistance in man: A glucocorticoid receptor-mediated disease. J. Clin. Invest. 69: 126 (1982).CrossRefGoogle Scholar
  8. 8.
    G. P. Chrousos, A. C. M. Vingerhoeds, D. L. Loriaux, M. B. Lipsett, Primary cortisol resistance: A family study. J. Clin. Endocrinol. Metab. 56: 1243 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    G. M. Brown, L. J. Grota, D. P. Penney and S. Reichlin, Pituitary-adrenal function in the squirrel monkey. Endocrinology 86: 519 (1970).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Yamamoto, S. Utsu, Y. Tamioka and N. Ohsawa, Extremely high levels of corticosteroids and low levels of corticosteroid binding macromolecule in plasma of marmoset monkeys. Acta Endocr Copenh 85: 398 (1970).Google Scholar
  11. 11.
    G. P. Chrousos, D. Renquist, D. Brandon, C. Eil, M. Pugeat, R. Vigersky, G. B. Cutler Jr., D. L. Loriaux and M. B. Lipsett, Glucocorticoid hormone resistance during primate evolution: receptor-mediated mechanisms. Proc. Natn. Acad. Sci. USA 79: 2036 (1982).CrossRefGoogle Scholar
  12. 12.
    J. D. Baxter, M. Schambelan, D. T. Matulich, B. J. Spindler, A. A. Taylor, F. C. Bartter, Aldosterone receptors and the evolution of plasma mineralocorticoid activity in normal and hypertensive states. J. Clin. Invest. 58: 579 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    N. C. Lan, B. Graham, F. C. Bartter, J. D. Baxter, Binding of steroids to mineralocorticoid receptors: implications for in vivo occupancy by glucocorticoids. J. Clin. Endocrinol. Metab. 54: 332 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    P. Gerrard, M. Palm-Vliers, Structure-activity relationships for agonistic and antagonistic mineralocorticoids. J. Steroid Biochem 12: 1299 (1980).Google Scholar
  15. 15.
    I. Ringler, Activities of adrenocorticosteroids in experimental animals and man. In: Dorfman RF (ed) Methods in Hormone Research. Academic Press, New York, part A, vol 3:227–329 1964 ).Google Scholar
  16. 16.
    M. M. Pugeat, G. P. Chrousos, B. C. Nisula, D. L. Loriaux, D. Brandon, M. B. Lipsett, Plasma cortisol transport and primate evolution. Endocrinology 115: 357 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    F. G. Cassorla, B. D. Albertson, G. P. Chrousos, J. D. Booth, D. Renquist, M. B. Lipsett and D. L. Loriaux, The mechanism of hypercortisolemia in the squirrel monkey. Endocrinology 111: 448 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    G. P. Chrousos, D. L. Loriaux, D. Brandon, J. Shull, D. Renquist, W. Hogan, M. Tornita, M. B. Lipsett, Adaptation of the mineralocorticoid target tissues to the high circulating cortisol and progesterone plasma levels in the squirrel monkey. Endocrinology 115: 25 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    J. R. Napier, P. H. Napier, A Handbook of Living Primates. Academic Press, New York (1967).Google Scholar
  20. 20.
    V. M. Sarich, Primate systematics with special reference to Old World monkeys: a protein perspective. In: J. R. Napier, P. H. Napier (eds). Old World Monkeys: Evolution, Systematics and Behavior. Academic Press, London, p. 177.Google Scholar
  21. 21.
    J. E. Cronin, V. M. Sarich, Marmoset evolution: the molecular evidence. Prim. Med. 10: 12 (1978).Google Scholar
  22. 22.
    R. L. Cichion, A. B. Chiarelli (eds), Evolutionary Biology of the New World Monkeys and Continental Drift. Plenum Press, New York, (1980).Google Scholar
  23. 23.
    J. P. Preslock, S. H. Hampton, J. K. Hampton, Jr., Cyclic variations of serum progestins and immunoreactive estrogens in marmosets. Endocrinology 92: 1096 (1973).PubMedCrossRefGoogle Scholar
  24. 24.
    R. C. Wolf, R. F. O’Connor, J. A. Robinson, Cyclic changes in plasma progestins and estrogens in squirrel monkeys. Biol. Reprod. 17: 228 (1977).PubMedCrossRefGoogle Scholar
  25. 25.
    R. C. Bonney, A. F. Dixson, D. Fleming, Cyclic changes in the circulating and urinary levels of ovarian steroids In the adult female own monkey (Aotus trivirgatus). J. Reprod. Fertil. 56: 271 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    D. H. Abbott, J. P. Hearn, Physical, hormonal and behavioral aspects of sexual development in the marmoset monkey Callithrix jacchus. J. Reprod. Fertil. 53: 155 (1978).CrossRefGoogle Scholar
  27. 27.
    G. P. Chrousos, D. Renquist, D. Brandon, D. Barnard, D. Fowler, D. L. Loriaux, M. B. Lipsett, The squirrel monkey: receptor-mediated resistance to progesterone ? J. Clin. Endocrinol. Metab. 55: 364 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    G. P. Chrousos, D. Brandon, D. M. Renquist, M. Tornita, E. Johnson, D. L. Loriaux, M. B. Lipsett, Uterine estrogen and progesterone receptors in an estrogen-and progesterone-“resistant” primate. J. Clin. Endocrinol. Metab. 58: 516 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Pugeat, B. Rocle, G. P. Chrousos, J. F. Dunn, M. B. Lipsett, B. C. Nisula, Plasma testosterone transport in primates. J. Steroid Biochem. 20: 473, (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    J. J. Chen, E. R. Smith, G. D. Gray, J. M. Davidson, Seasonal changes in plasma testosterone and ejaculatory capacity in squirrel monkeys (Saimiri sciureus). Primates 22: 253 (1981).CrossRefGoogle Scholar
  31. 31.
    T. Shinki, Y. Shiina, S. Takahashi, Y. Tanioka, H. Koizumi, T. Suda, Extremely high circulating levels of la25-dihydroxyvitamin D3 in the marmoset, a New World monkey. Biochem. Biophys. Res. Commun. 114: 452 (1983).Google Scholar
  32. 32.
    M. Tornita, G. P. Chrousos, D. D. Brandon, S. Ben-Or, C. Foster, L. DeVougn, S. J. Taylor, D. L. Loriaux and M. B. Lipsett, Glucocorticoid receptors in Epstein-Barr virus-transformed human lymphocytes. Hormone Metabol. Res. (in press), (1985).Google Scholar
  33. 33.
    N. J. Holbrook, D. C. Bloomfeld, A. Munck, Analysis of activated and nonactivated cytoplasmic glucocorticoidreceptor complexes from human leukemia cells by rapid DNA-diethylaminoethyl minicolumn chromatography. Cancer Res. 43: 4478 (1983).PubMedGoogle Scholar
  34. 34.
    N. J. Holbrook, J. E. Bodwell, M. Jeffries, A. Munck, Characterization of monoactivated and activated glucocorticoid receptor complexes from intact rat thymus cells. J. Biol. Chem. 258: 6477 (1983).PubMedGoogle Scholar
  35. 35.
    R. L. Landau, K. Lugibihl, The catabolic and natriuretic effects of progesterone in man. Recent Prog. Horm. Res. 17: 249 (1961).Google Scholar
  36. 36.
    C. M. Kagana, Antialdosterones. In: E. I. Dorfman (ed) Methods in Hormone Research. Academic Press, New York, part A, vol 3:351–414 (1964).Google Scholar
  37. 37.
    R. L. Landon, K. Lugibihl, Inhibition of the sodium-retaining influence of aldosterone by progesterone. J. Clin. Endocrinol. Metab. 18: 1237 (1958).CrossRefGoogle Scholar
  38. 38.
    M. Watanabe, C. I. Meeker, M. J. Grey, E. A. Sims, S. Solomon, Secretion of aldosterone in normal pregnancy. J. Clin. Invest. 42: 1619 (1963).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • George P. Chrousos
    • 1
  • D. Lynn Loriaux
    • 1
  • Masako Tomita
    • 1
  • David D. Brandon
    • 1
  • David Renquist
    • 1
  • Barry Albertson
    • 1
  • Mortimer B. Lipsett
    • 1
  1. 1.Developmental Endocrinology Branch, National Institute of Child Health and Human Development, and the Veterinary Resources Branch, Division of Research ServicesNational Institutes of HealthBethesdaUSA

Personalised recommendations