Advertisement

“Defective” Receptors in Steroid-Resistant Conditions may be Proteolytic Artifacts

  • Merry R. Sherman
  • Fe B. Tuazon
  • Yee-Wan Stevens
  • Joseph A. Carlino
  • En-Mei Niu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 196)

Abstract

The specific question addressed in this report is whether the resistance to steroid treatment of certain tissues or tumors which appear to contain a normal quantity of steroid-binding sites may be due to stuctural defects in the receptors. This question may be seen as part of the more general question of whether there are intrinsic variations in the structures of receptors for a given class of steroids in different healthy tissues, in healthy vs. malignant tissues or in different types of tumors. Our experimental approach to these questions has involved the stabilization and precise physicochemical characterization of the receptors. To date, we have studied the estrogen and progestin receptors from human breast cancers and benign and malignant gynecologic specimens and the glucocorticoid receptors from several healthy and malignant rodent tissues and from normal human lymphocytes and various types of leukemic cells. Chromatographic and ultracentrifugal analyses in buffers of low ionic strength, containing 20 mM Na2MoO4 as the stabilizer, have revealed each of these receptors to be a large, oligomeric complex, characterized by remarkably similar values of the Stokes radius, sedimentation coefficient, molecular weight and axial ratio.

In the absence of adequate stabilization, however, we found that the receptors for three classes of steroids in extracts of some healthy, steroid-responsive tissues, such as rat kidney and human uterine endometrium, are invariably degraded by endogenous proteinases. The extent of such cleavage is increased considerably by freezing the tissues prior to homogenization. Studies designed to distinguish the intact receptors from the products of proteolysis have included the characterization of receptors in cytosols prepared from mixtures of rat liver and kidney. The results strongly support the interpretation that the smaller size of the receptors detected in kidney cytosol reflects their cleavage by the more active proteinases in that tissue.

The sizes and shapes of the receptors in cytosols from various tissues were found to be correlated with the activities of specific endopeptidases, assayed fluorometrically with peptidyl derivatives of 7-amino-4-methylcoumarin (AMC). These studies suggested that the receptors are vulnerable to cleavage by “lysine-specific” endopeptidases, detected with t-butyloxycarbonyl-L-valyl-L-leucyl-L-lysyl-AMC. An enzyme of this specificity was partially purified from rat kidney cytosol and tested for its ability to digest the glucocorticoid receptors from rat liver cytosol. Under the conditions used, about 40% of the receptors were converted to the mero-receptor, the smallest fragment containing the steroid-binding site.

Since the cleavage of steroid receptors in vitro has been amply documented, we conclude that the observation of altered receptors in extracts of tissues or tumors that are resistant to steroid treatment does not prove that this resistance is due to intrinsic structural defects in the receptors.

Keywords

Acute Lymphoblastic Leukemia Glucocorticoid Receptor Axial Ratio Triamcinolone Acetonide Limited Proteolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Jensen, G. E. Block, S. Smith, E. R. DeSombre, Hormonal dependency of breast cancer. In: M. L. Griem, E. V. Jensen, J. E. Ultmann, R. W. Wissler (eds) Recent Results in Cancer Research. Springer-Verlag, Berlin, 42:55 (1973).Google Scholar
  2. 2.
    W. L. McGuire, G. C. Chamness, M. E. Costlow, R. E. Shepherd, Hormone dependence in breast cancer. Metabolism 23: 75 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    J. L. Wittliff, B. W. Beatty, E. D. Savlov, W. B. Patterson, R. A. Cooper, Jr., Estrogen receptors and hormone dependency in human breast cancer. In: G. St. Arneault, P. Band, L. Israël (eds) Recent Results in Cancer Research. Springer-Verlag, Berlin, 57:59 (1976).Google Scholar
  4. 4.
    E. B. Thompson, M. E. Lippman (eds), Steroid Receptors and the Management of Cancer. CRC Press, Boca Raton, FL, Vol. 1 and 2 (1979).Google Scholar
  5. 5.
    J. Stevens, Y.-W. Stevens, Glucocorticoid receptors in human leukemia and lymphoma: Quantitation and clinical significance. In: V. P. Hollander (ed) Hormonally Responsive Tumors. Academic Press, Orlando, FL, p. 155 (1985).Google Scholar
  6. 6.
    M. R. Sherman, L. A. Pickering, F. M. Rollwagen, L. K. Miller, Mero-receptors: Proteolytic fragments of receptors containing the steroid-binding site. Fed. Proc. 37: 167 (1978).PubMedGoogle Scholar
  7. 7.
    M. R. Sherman, F. B. Tuazon, L. K. Miller, Estrogen receptor cleavage and plasminogen activation by enzymes in human breast tumor cytosol. Endocrinology 106: 1715 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    L. K. Miller, F. B. Tuazon, E.-M. Niu, M. R. Sherman, Human breast tumor estrogen receptor: Effects of molybdate and electrophoretic analyses. Endocrinology 108: 1369 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    E.-M. Niu, R. M. Neal, V. K. Pierce, M. R. Sherman, Structural similarity of molybdate-stabilized steroid receptors in human breast tumors, uteri and leukocytes. J. Steroid Biochem. 15: 1 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    M. R. Sherman, F. B. Tuazon, Y.-W. Stevens, E.-M. Niu, Oligomeric steroid receptor forms and the products of their dissociation and proteolysis. In: H. Eriksson, J.-X. Gustafsson (eds) Steroid Hormone Receptors: Structure and Function (Nobel Symposium No. 57). Elsevier, Amsterdam, p. 3 (1983).Google Scholar
  11. 11.
    E.-M. Niu, J. L. Lewis, Jr., M. R. Sherman, Steroid receptors in human breast cancer and uterine specimens: Quantitation and structural analysis. Reprod. Contracep. 2(4):10 (1982) (In Chinese).Google Scholar
  12. 12.
    M. R. Sherman, M. C. Moran, R. M. Neal, E.-M. Niu, F. B. Tuazon, Characterization of molybdate-stabilized glucocorticoid receptors in healthy and malignant tissues. In: H. J. Lee, T. J. Fitzgerald (eds) Progress in Research and Clinical Applications of Corticosteroids. Heyden, Philadelphia, p. 45 (1982).Google Scholar
  13. 13.
    M. R. Sherman, Y.-W. Stevens, F. B. Tuazon, Multiple forms and fragments of cytosolic glucocorticoid receptors from human leukemic cells and normal lymphocytes. Cancer Res. 44: 3783 (1984).PubMedGoogle Scholar
  14. 14.
    M. R. Sherman, D. Barzilai, P. R. Pine, F. B. Tuazon, Glucocorticoid receptor cleavage by leupeptin-sensitive enzymes in rat kidney cytosol. In: W. W. Leavitt, J. H. Clark (eds) Steroid Hormone Receptor Systems. Plenum Press, New York, p. 357 (1979).Google Scholar
  15. 15.
    H. J. Lee, H. L. Bradlow, M. C. Moran, M. R. Sherman, Binding of glucocorticoid 21-oic acids and esters to molybdate-stabilized hepatic receptors. J. Steroid Biochem. 14: 1325 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    M. R. Sherman, F. B. Tuazon, G. J. Sömjen, Stabilization and cleavage of steroid receptors: Effects of leupeptin and molybdate on rat kidney glucocorticoid receptors. In: R. J. Soto, A. De Nicola, J. Blaquier (eds) Physiopathology of Endocrine Diseases and Mechanisms of Hormone Action. Alan R. Liss, New York, p. 321 (1981).Google Scholar
  17. 17.
    M. R. Sherman, M. C. Moran, F. B. Tuazon, Y.-W. Stevens, Structure, dissociation, and proteolysis of mammalian steroid receptors. Multiplicity of glucocorticoid receptor forms and proteolytic enzymes in rat liver and kidney cytosols. J. Biol. Chem. 258: 10366 (1983).PubMedGoogle Scholar
  18. 18.
    A. Bfóyum, Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immunol. 5 (Suppl 5): 9 (1976).Google Scholar
  19. 19.
    P.Mien, S. Stein, W. Dairman, S. Udenfriend, Fluorometric assay of proteins in the nanogram range. Arch. Biochem. Biophys. 155: 213 (1973).CrossRefGoogle Scholar
  20. 20.
    R. H. Rice, G. E. Means, Radioactive labeling of proteins in vitro. J. Biol. Chem. 246: 831 (1971).PubMedGoogle Scholar
  21. 21.
    M. R. Sherman, Physical-chemical analysis of steroid hormone receptors. Methods Enzymol. 36: 211 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    H. K. Schachman, Ultracentrifugation in Biochemistry. Academic Press, New York, p. 239 (1959).Google Scholar
  23. 23.
    H. Kato, N. Adachi, Y. Ohno, S. Iwanaga, K. Takada, S. Sakakibara, New fluorogenic peptide substrates for plasmin. J. Biochem. (Tokyo) 88: 183 (1980).Google Scholar
  24. 24.
    K. Murakami, T. Ohsawa, S. Hirose, K. Takada, S. Sakakibara, New fluorogenic substrates for renin. Anal. Biochem. 110: 232 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    N. N. Aronson, Jr., A. J. Barrett, The specificity of cathepsin B. Hydrolysis of glucagon at the C-terminus by a peptidyldipeptidase mechanism. Biochem. J. 171: 759 (1978).PubMedGoogle Scholar
  26. 26.
    J. S. Bond, A. J. Barrett, Degradation of fructose-1,6-bisphosphate aldolase by cathepsin B. A further example of peptidyldipeptidase activity of this proteinase. Biochem. J. 189: 17 (1980).PubMedGoogle Scholar
  27. 27.
    C. Kettner, E. Shaw, Inactivation of trypsin-like enzymes with peptides of arginine chloromethyl ketone. Methods Enzymol. 80: 826 (1981)PubMedCrossRefGoogle Scholar
  28. 28.
    T. J. Schmidt, G. Litwack, Activation of the glucocorticoidreceptor complex. Physiol. Rev. 62: 1131 (1982).PubMedGoogle Scholar
  29. 29.
    W. W. Grody, W. T. Schrader, B. W. O’Malley, Activation, transformation, and subunit structure of steroid hormone receptors. Endocrine Rev. 3: 141 (1982).CrossRefGoogle Scholar
  30. 30.
    M. R. Sherman, J. Stevens, Structure of mammalian steroid receptors: Evolving concepts and methodological developments. Ann. Rev. Physiol. 46: 83 (1984).CrossRefGoogle Scholar
  31. 31.
    W. V. Vedeckis, Steroid hormone receptor structure in normal and neoplastic cells. In: V. P. Hollander (ed) Hormonally Responsive Tumors. Academic Press, Orlando, FL, p. 3 (1985).Google Scholar
  32. 32.
    E. V. Jensen, T. Suzuki, T. Kawashima, W. E. Stumpf, P. W. Jungblut, E. R. DeSombre, A two-step mechanism for the interaction of estradiol with rat uterus. Proc. Natl. Acad. Sci. USA 59: 632 (1968).PubMedCrossRefGoogle Scholar
  33. 33.
    B. M. Raaka, H. H. Samuels, The glucocorticoid receptor in Gill cells. Evidence from dense amino acid labeling and whole cell studies for an equilibrium model explaining the influence of hormone on the intracellular distribution of receptor. J. Biol. Chem. 258: 417 (1983).PubMedGoogle Scholar
  34. 34.
    N. J. Holbrook, J. E. Bodwell, M. Jeffries, A. Munck, Characterization of nonactivated and activated glucocorticoid-receptor complexes from intact rat thymus cells. J. Biol. Chem. 258: 6477 (1983).PubMedGoogle Scholar
  35. 35.
    M. K. Dahmer, P. R. Housley, W. B. Pratt, Effects of molybdate and endogenous inhibitors on steroid-receptor inactivation, transformation, and translocation. Ann. Rev. Physiol. 46: 67 (1984).CrossRefGoogle Scholar
  36. 36.
    W. J. King, G. L. Greene, Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature 307: 745 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    W. V. Welshons, M. E. Lieberman, J. Gorski, Nuclear localization of unoccupied oestrogen receptors. Nature 307: 747 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    D. Toft, J. Gorski, A receptor molecule for estrogens: Isolation from the rat uterus and preliminary characterization. Proc. Natl. Acad. Sci. USA 55: 1574 (1966).PubMedCrossRefGoogle Scholar
  39. 39.
    A. C. Notides, S. Sasson, The positive cooperativity of the estrogen receptor and its relationship to receptor activation. In: H. Eriksson, J.-Â. Gustafsson (eds) Steroid Hormone Receptors: Structure and Function (Nobel Symposium No. 57). Elsevier, Amsterdam, p. 103 (1983).Google Scholar
  40. 40.
    T. Aoyagi, H. Umezawa, Structures and activities of protease inhibitors of microbial origin. In: E. Reich, D. B. Rifkin, E. Shaw (eds) Proteases and Biological Control. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p. 429 (1975).Google Scholar
  41. 41.
    J.-X. Gustafsson, N. Einhorn, G. Elfstróm, B. Nordenskjöld, O. Wrange, Progestin receptor in endometrial carcinoma. In: W. L. McGuire, J.-P. Raynaud, E.-E. Baulieu (eds) Progesterone Receptors in Normal and Neoplastic Tissues (Progress in Cancer Research and Therapy, Vol. 4). Raven Press, New York, p. 299 (1977).Google Scholar
  42. 42.
    M. A. Costello, M. R. Sherman, Modification of mouse mammary tumor glucocorticoid receptor forms by ribonuclease treatment. Program of the 62nd Annual Meeting of The Endocrine Society, Washington, D. C., p. 174 (1980).Google Scholar
  43. 43.
    M. Feldman, J. Kallos, V. P. Hollander, RNA inhibits estrogen receptor binding to DNA. J. Biol. Chem. 256: 1145 (1981).PubMedGoogle Scholar
  44. 44.
    M. T. Chong, M. E. Lippman, Effects of RNA and ribonuclease on the binding of estrogen and glucocorticoid receptors from MCF-7 cells to DNA-cellulose. J. Biol. Chem. 257: 2996 (1982).PubMedGoogle Scholar
  45. 45.
    B. A. Lessey, P. S. Alexander, K. B. Horwitz, The subunit structure of human breast cancer progesterone receptors: Characterization by chromatography and photoaffinity labeling. Endocrinology 112: 1267 (1983).PubMedCrossRefGoogle Scholar
  46. 46.
    J. Carlstedt-Duke, O. Wrange, S. Okret, J. Stevens, Y.-W. Stevens, J.-Â. Gustafsson, Functional analysis of the glucocorticoid receptor by limited proteolysis. In: A. K. Roy, J. H. Clark (eds) Gene Regulation by Steroid Hormones. Springer, New York, 2:151 (1983).CrossRefGoogle Scholar
  47. 47.
    U. Gehring, A. Hotz, Photoaffinity labeling and partial proteolysis of wild-type and variant glucocorticoid receptors. Biochemistry 22: 4013 (1983).PubMedCrossRefGoogle Scholar
  48. 48.
    M. Mead, Blackberry Winter: My Earlier Years. Pocket Books, New York, p. 234 (1972).Google Scholar
  49. 49.
    R. McCaffrey, A. Lillquist, R. Bell, Abnormal glucocorticoid receptors in acute leukemia cells. Blood 59: 393 (1982).PubMedGoogle Scholar
  50. 50.
    N. J. Holbrook, C. D. Bloomfield, A. Munck, Analysis of activated and nonactivated cytoplasmic glucocorticoid-receptor complexes from human leukemia cells by rapid DNA-diethylaminoethyl minicolumn chromatography. Cancer Res. 43: 4478 (1983).PubMedGoogle Scholar
  51. 51.
    C. A. Barnett, G. Litwack, Additional evidence that corticosteroid binder IB is not derived from binder II by limited proteolysis. Biochem. Biophys. Res. Commun. 108: 1670 (1982).Google Scholar
  52. 52.
    M. R. Sherman, S. B. P. Atienza, J. R. Shanksy, L. M. Hoffman, Progesterone receptors of chick oviduct. Steroid-binding “subunit” formed with divalent cations. J. Biol. Chem. 249: 5351 (1974).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Merry R. Sherman
    • 1
  • Fe B. Tuazon
    • 1
  • Yee-Wan Stevens
    • 1
  • Joseph A. Carlino
    • 1
  • En-Mei Niu
    • 1
  1. 1.Endocrine Biochemistry LaboratoryMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations