Advertisement

The Common Marmoset as an Animal Model for Vitamin D-Dependent Rickets, Type II

  • Tatsuo Suda
  • Naoyuki Takahashi
  • Toshimasa Shinki
  • Akira Yamaguchi
  • Yoshikuni Tanioka
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 196)

Abstract

Vitamin D3 is metabolized first in the liver to 25-hydroxyvitamin D3 [25(OH)D3] and then in the kidney mainly to lα, 25-dihydroxyvitamin D3 [1α, 25(OH)2D3] and 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3].1 The 1, α25(OH)2D3 is now regarded as the hormonal form of the vitamin in promoting intestinal calcium transport and bone mineral mobilization.1 The renal lα-hydroxylation of 25(OH)D3 is the rate-limiting step in the production of lα, 25(OH)2D3 and it is strictly regulated by the plasma levels of phosphorus, parathyroid hormone (PTH), calcitonin, estrogen, lα, 25(OH)2D3, and other steroid and peptide hormones.2 Since the discovery of lα, 25(OH)2D3, many lines of evidence have indicated that the hormone is incorporated by receptor mediation into the nuclear fraction of target cells before exerting its biological functions.3 This suggests that the lα, 25(OH)2D3 acts in a way similar to that of other steroid hormones.

Keywords

Rhesus Monkey Squirrel Monkey World Monkey Common Marmoset World Primate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. F. DeLuca, Vitamin D and calcium transport. Ann. NY Acad. Sci. 307: 356 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    D. R. Fraser, Regulation of metabolism of vitamin D. Physiol. Rev. 60: 551 (1980).PubMedGoogle Scholar
  3. 3.
    M. R. Haussler and T. A. McCain, Basic and clinical concepts related to vitamin D metabolism and action. N. Engl. J. Med. 297: 974 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    S. J. Marx, A. M. Spiegel, E. M. Brown, D. C. Gardner, R. W. Downs, Jr., M. Attie, A. J. Hamstra and H. F. DeLuca, A familial syndrome of decrease in sensitivity to 1,25-dihydroxyvitamin D. J. Clin. Endocrinol. Metab. 47:1303 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Tsuchiya, N. Matsuo, H. Cho, M. Kumagai, A. Yasaka, T. Suda, H. Orimo and M. Shiraki, An unusual form of vitamin D-dependent rickets in a child: alopecia and marked end-organ hyposensitivity to biologically active vitamin D. J. Clin. Endocrinol. Metab. 51: 685 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Shinki, Y. Shiina, N. Takahashi, Y. Tanioka, H. Koizumi, and T. Suda, Extremely high circulating levels of la,25dihydroxyvitamin D3 in the marmoset, a New World monkey. Biochem. Biophys. Res. Commun. 114: 452 (1983).CrossRefGoogle Scholar
  7. 7.
    F. Deinhardt, Nutritional requirements of marmosets. In: Harris RS (ed) Feeding and Nutrition of Nonhuman Primates. Academic Press, New York and London, p. 175 (1970).Google Scholar
  8. 8.
    R. T. Franceschi, H. F. DeLuca, and D.L. Mercado, Temperature-dependent inactivation of nucleic acid binding and aggregation of the 1,25-dihydroxyvitamin D3 receptor. Arch. Biochem. Biophys. 222: 504 (1983).Google Scholar
  9. 9.
    J. P. Preslock, S. H. Hampton, and J. K. Hampton, Jr., Cyclic variations of serum progestins and immunoreactive estrogens in marmosets. Endocrinology 92: 1096 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    J. P. Hearn, D. H. Abbott, P. C. Chambers, J. K. Hodges, and S. F. Lunn, Use of the common marmoset (Callithrix jacchus) in reproductive research. Primate Med. 10: 40 (1978).Google Scholar
  11. 11.
    D. H. Abbott and J. P. Hearn, Physical, hormonal and behavioural aspects of sexual development in the marmoset monkey Callithrix jacchus. J. Reprod. Fert. 53: 155 (1978).CrossRefGoogle Scholar
  12. 12.
    S. Yamamoto, S. Utsu, Y. Tanioka, and N. Ohsawa, Extremely high levels of corticosteroids and low levels of corticosteroid binding macromolecule in plasma of marmoset monkeys. Acta. Endocrinol. 85: 398 (1977).PubMedGoogle Scholar
  13. 13.
    U. A. Liberman, C. Eil, and S. J. Marx, Resistance to 1,25dihydroxyvitamin D. Association with heterogeneous defects in cultured skin fibroblasts. J. Clin. Invest. 71: 192 (1983).CrossRefGoogle Scholar
  14. 14.
    R. C. Wolf, R. F. O’Connor, and J. A. Robinson, Cyclic changes in plasma progestins and estrogens in squirrel monkeys. Biol. Reprod. 17: 228 (1977).CrossRefGoogle Scholar
  15. 15.
    M. I. Wilson, G. M. Brown, and D. Wilson, Annual and diurnal changes in plasma androgen and cortisol in adult male squirrel monkeys (Saimiri sciureus) studied longitudinally. Acta. Endocrinol. 87: 424 (1978).PubMedGoogle Scholar
  16. 16.
    R. C. Bonney, A. F. Dixson, and D. Fleming, Cyclic changes in the circulating and urinary levels of ovarian steroids in the adult female owl monkey (Aotus trivirgatus). J. Reprod. Fert. 56: 271 (1979).CrossRefGoogle Scholar
  17. 17.
    E. Knobil, On the control of gonadotropin secretion in the rhesus monkey. Recent Prog. Horm. Res. 30: 1 (1974).PubMedGoogle Scholar
  18. 18.
    D. E. Wildt, L. L. Doyle, S. C. Stone, and R. M. Harrison, Correlation of perineal swelling with serum ovarian hormone levels, vaginal cytology, and ovarian follicular development during the baboon reproductive cycle. Primates 18: 261 (1977).CrossRefGoogle Scholar
  19. 19.
    K. Oshima, M. Hayashi, and K. Matsubayashi, Progesterone levels in the Japanese monkey (Macaca fuscata fuscata) during the breeding and non-breeding season and pregnancy. J. Med. Primatol. 6: 99 (1977).PubMedGoogle Scholar
  20. 20.
    G. H. Stabenfeldt, and A. C. Hendrickx, Progesterone studies in the Macaca fascicularis. Endocrinology 92: 1296 (1973).PubMedCrossRefGoogle Scholar
  21. 21.
    G. P. Chrousos, D. Renquist, D. Brandon, D. Barnard, D. Fowler, D. L. Loriaux, and M. B. Lipsett, The squirrel monkey: receptor-mediated end-organ resistance to progesterone? J. Clin. Endocrinol. Metab. 55: 364 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    J. E. Cronin and V. M. Sarich, Marmoset evolution: the molecular evidence. Prim. Med. 10: 12 (1978).Google Scholar
  23. 23.
    S. Yoshiki, T. Ueno, T. Akita, and Y. Yamanouchi, Improved procedure for histological identification of osteoid matrix in decalcified bone. Stain Technol. 58: 85 (1983).Google Scholar
  24. 24.
    N. Horiuchi, T. Shinki, S. Suda, N. Takahashi, S. Yamada, H. Takayama, and T. Suda, A rapid and sensitive in vitro assay of 25-hydroxyvitamin D3-la-hydroxylase and 24-hydroxylase using rat kidney homogenates. Biochem. Biophys. Res. Commun. 121: 174 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Tatsuo Suda
    • 1
  • Naoyuki Takahashi
    • 1
  • Toshimasa Shinki
    • 1
  • Akira Yamaguchi
    • 2
  • Yoshikuni Tanioka
    • 3
  1. 1.Department of Biochemistry, School of DentistryShowa UniversityShinagawa-ku, TokyoJapan
  2. 2.Department of Oral Pathology, School of DentistryShowa UniversityShinagawa-ku, TokyoJapan
  3. 3.Central Institute for Experimental AnimalsKawasaki, KanagawaJapan

Personalised recommendations