Advertisement

Animal Models of Mineralocorticoid Resistance

  • Walter J. MeyerIII
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 196)

Abstract

The development of animal models with a mineralocorticoid hormone resistance was a by-product of the development of animal models to study hypertension. One of the first models of sodium induced hypertension was developed by Rodbard with salt loading of chicken.1 In the early 1950’s Sapirstein2 and Toussaint3 followed with rat models for the development of salt induced hypertension. In 1953, Meneely and co-workers reported a linear relationship between mean blood pressure and salt ingestion in rats maintained on a specific sodium diet for long periods of time.4 Hypertension developed and persisted in all animals on high salt intake.4,5

Keywords

Mineralocorticoid Receptor Salt Intake Aortic Cell Deoxycorticosterone Acetate Receptor Binding Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Lenel, L. N. Katz, and S. Rodbard, Arterial hypertension in the chicken. Am. J. Physiol. 152: 557 (1948).PubMedGoogle Scholar
  2. 2.
    L. A. Sapirstein, W. L. Brandt and D. R. Drury, Production of hypertension in the rat by substituting hypertonie sodium chloride solutions for drinking water. Pro. Soc. Exp. Biol. Med. 73: 82 (1950).Google Scholar
  3. 3.
    C. Toussaint, R. Wolter, and P. Sibille, Effects de l’ingestion de grandes quantites de chlorure de sodium chez le rat. C. R. Soc. Biol. Paris 147: 1637 (1953).Google Scholar
  4. 4.
    G. R. Meneely, R. G. Tucker, W. J. Darby, and S. H. Auerbach, Chronic sodium chloride toxicity in the albino rat II. Occurrence of hypertension and of a syndrome of edema and renal failure. J. Exp. Med. 98: 71 (1953).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Koletsky, Hypertensive vascular disease produced by salt. Lab. Invest. 7: 377 (1958).PubMedGoogle Scholar
  6. 6.
    F. Gross, Die Wirkung von desoxycorticosteronacetat und kochsalz auf den experimentellen hochdruck der ratte. Arch. Int. Pharmacodyn. Ther. 81: 211 (1950).PubMedGoogle Scholar
  7. 7.
    H. Selye, C. E. Hall, and E. M. Rowley, Malignant hypertension produced by treatment with deoxycorticosterone acetate and sodium chloride. Can. Med. Assoc. J. 49: 88 (1943).PubMedGoogle Scholar
  8. 8.
    C. E. Hall and O. Hall, Hypertension and hypersalimentation I. Aldosterone hypertension. Lab. Invest. 14: 285 (1965).PubMedGoogle Scholar
  9. 9.
    D. Kumar, A. E. D. Hall, R. G. Nakashima, and A. G. Gornall, Studies on aldosterone II. Hypertension on a cumulative effect of aldosterone administration. Can. J. Biochem. 35: 113 (1957).PubMedCrossRefGoogle Scholar
  10. 10.
    F. R. Skelton, Production and inhibition of hypertensive disease in the rat by corticosterone. Endocrinology 62: 365 (1958).PubMedCrossRefGoogle Scholar
  11. 11.
    L. Tobian, Human essential hypertension: implications of animal studies. Ann. Int. Med. 98: 729 (1983).PubMedGoogle Scholar
  12. 12.
    J. W. Conn, R. F. Knopf, and R. M. Nesbit, Clinical characteristics of primary aldosteronism from an analysis of 145 cases. Am. J. Surg. 107: 159 (1964).PubMedCrossRefGoogle Scholar
  13. 13.
    L. K. Dahl, M. Heine, and L. Tassinari, Effects of chronic excess salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J. Exp. Med. 115: 1173 (1962).PubMedCrossRefGoogle Scholar
  14. 14.
    L. K. Dahl and E. Schackow, Effects of chronic salt ingestion: experimental hypertension in the rat. Can. Med. Assoc. J. 90: 155 (1964).PubMedGoogle Scholar
  15. 15.
    L. K. Dahl, M. Heine, and K. Thompson, Genetic influence of renal homografts on the blood pressure of rats from different strains. Proc. Soc. Exp. Biol. Med. 140: 852 (1972).PubMedGoogle Scholar
  16. 16.
    J. Iwai, K. D. Knudsen, L. K. Dahl, and L. Tassinari, Effect of adrenalectomy on blood pressure in salt-fed, hypertension-prone rats. Failure of hypertension to develop in absence of evidence of adrenal cortical tissue. J. Exp. Med. 129: 663 (1969).PubMedCrossRefGoogle Scholar
  17. 17.
    J. P. Rapp and L. K. Dahl, Adrenal steroidogenesis in rats bred for susceptibility and resistance to the hypertensive effect of salt. Endocrinology 88: 52 (1971).PubMedCrossRefGoogle Scholar
  18. 18.
    J. P. Rapp, and L.K Dahl, Mutant forms of cytochrome P-450 controlling both 18- and 11 3-steroid hydroxylation in the rat. Biochemistry 15: 1235 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    J. P. Rapp and L. K. Dahl, Mendelian inheritance of 18- and 11210 t3-steroid hydrolase activities in the adrenals of rats genetically susceptible or resistant to hypertension. Endocrinology 90: 1435 (1972).PubMedCrossRefGoogle Scholar
  20. 20.
    J. W. Funder, D. Duval, P. Meyer, and L. K. Dahl, Mineralocorticoid receptors in salt-susceptible and salt-resistant rats. Endocrinology 94: 1739 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    J. P. Rapp, Dahl salt-susceptible and salt-resistant rats a review. Hypertension 4: 753 (1982).PubMedGoogle Scholar
  22. 22.
    B. E. Park, The development of a renal hypertensive model. Tex. Rep. Biol. Med. 29: 399 (1971).Google Scholar
  23. 23.
    C. W. Hall, S. Ayachi, and O. Hall, Salt appetite and hypertensive response to salt and to deoxycorticosterone in SpragueDawley and Long-Evans rats. Tex. Rep. Biol. Med. 30: 143 (1972).PubMedGoogle Scholar
  24. 24.
    C. E. Hall, S. Ayachi, and O. Hall, Salt hypertension produced by sucrose facilitation of saline consumption in Long-Evans rats. Tex. Rep. Biol. Med. 30: 155 (1972).PubMedGoogle Scholar
  25. 25.
    G. Solf, Hypothalamic regulation of sodium intake: relations to preoptic and tegmental function. Am. J. Physiol. 213: 1433 (1967).Google Scholar
  26. 26.
    M. N. Lassman and P. J. Mulrow, Deficiency of deoxycorticosterone-binding protein in the hypothalamus of rats resistant to deoxycorticosterone-induced hypertension. Endocrinology 94: 1541 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    C. E. Hall, S. Ayachi, and O. Hall, Genetic influence on saline consumption and salt hypertension as exhibited by the response of various rat strains and sub-strains. Tex. Rep. Biol. Med. 33: 509 (1975).PubMedGoogle Scholar
  28. 28.
    C. E. Hall, S. Ayachi, and 0. Hall, Immunity of Fischer 344 to salt hypertension. Life Sci. 18: 1001 (1976).PubMedCrossRefGoogle Scholar
  29. 29.
    C. E. Hall and C. Hall, Resistance of Fischer 344 to salt deoxycorticosterone hypertension. Life Sci. 20: 1239 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    C. E. Hall, S. Ayachi, and 0. Hall, Sodium excretory response to acute salt loading and induction of adrenal-regeneration hypertension in Fischer 344 rats. Life Sci. 19: 175 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    L. Tobian and J. T. Binion, Tissue cations and water in arterial hypertension. Circulation 5: 754 (1952).PubMedGoogle Scholar
  32. 32.
    L. Tobian and P. D. Redleaf, Effect of hypertension on arterial wall electrolytes during deoxycorticosterone administration. Am. J. Physiol. 189: 451 (1957).PubMedGoogle Scholar
  33. 33.
    A. W. Jones and R. G. Hart, Altered ion transport in aortic smooth muscle during deoxycorticosterone acetate hypertension in the rat. Circ. Res. 37: 333 (1975).PubMedGoogle Scholar
  34. 34.
    E. T. Garwitz and A. W. Jones, Aldosterone infusion in the rat and dose-dependent changes in blood pressure and arterial ionic transport. Hypertension 4: 374 (1982).PubMedGoogle Scholar
  35. 35.
    J. H. Myers and D. F. Bohr, Mechanisms responsible for the pressure elevation in sodium-dependent mineralocorticoid hypertension. In: Funder J, Mantero F, Scoggins B (eds) Serono Symposia, The Adrenal Gland and Hypertension. Raven Press, New York, in press, (1985).Google Scholar
  36. 36.
    S. M. Friedman, Evidence for an enhanced transmembrane sodium (Na+) gradient induced by aldosterone in the incubated rat tail artery. Hypertension 4: 230 (1982).PubMedGoogle Scholar
  37. 37.
    A. M. Moura and M. Worcel, Direct action of aldosterone on transmembrane 22Na efflux from arterial smooth muscle: Rapid and delayed effects. In: Funder J, Mantero F, Scoggins B (eds) Serono Symposia, The Adrenal Gland and Hypertension Raven Press, New York, in press.Google Scholar
  38. 38.
    J. Chamley-Campbell, G. R. Campbell, and R. Ross, The smooth muscle cell in culture. Physiol. Rev. 59: 1 (1979).PubMedGoogle Scholar
  39. 39.
    N. R. Nichols, C. A. Olsson, and J. W. Funder, Steroid effect on protein synthesis in cultured smooth muscle cells from rat aorta. Endocrinology 113: 1096 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    W. J. Meyer and N. R. Nichols, Mineralocorticoid binding in cultured smooth muscle cells and fibroblasts from rat aorta. J. Steroid Biochem. 14: 1157 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    N. R. Nichols, H. H. Nguyen and W. J. Meyer, Physical separation of aortic corticoid receptors with Type I and Type II specificities. J. Steroid Biochem. 22: May, in press (1985).Google Scholar
  42. 42.
    Z. S. Krozowski and J. W. Funder, Renal mineralocorticoid receptors and hippocampal corticosterone-binding species have identical intrinsic steroid specificity. Proc. Natl. Acad. Sci. 80: 6056 (1983).Google Scholar
  43. 43.
    N. R. Nicols, C. E. Hall, and W. J. Meyer, Aldosterone binding sites in aortic cell cultures from spontaneously hypertensive rats. Hypertension 4: 646 (1982).Google Scholar
  44. 44.
    N. R. Nichols, C. E. Hall and W. J. Meyer, Decreased aldosterone receptor affinity in aorta cells from the Fischer 344 rat. J. Hypertension 1: 393 (1983).CrossRefGoogle Scholar
  45. 45.
    N. R. Nichols, O. F. Obert and W. J. Meyer, Comparison of aldosterone binding in aortic cells from Dahl salt-susceptible and salt-resistant rats. Life Sci. 36, in press (1985).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Walter J. MeyerIII
    • 1
  1. 1.Department of PediatricsThe University of Texas Medical BranchGalvestonUSA

Personalised recommendations