Industrial Applications

  • M. Fleischmann
  • D. Pletcher


The diverse applications of electrochemistry and its many-sided interactions with other branches of science and technology (Figure 1), have been illustrated by other papers contributed at this symposium. Table 1 lists some specific examples of present day applications and shows that these range from large scale syntheses (tens of millions of tons per annum, e.g. Cl2/NaOH, metal winning) to devices using electrochemistry on a very small scale, for example for on-line analysis or to batteries to power electronic circuits. Current trends in research are strongly influenced by these applications and are illustrated in Table 2; the increasing need for selective, non-polluting and energy efficient processes has led to a strong emphasis on research on kinetics (and especially on electrocatalysis), the study of new reaction systems (including organic electrode reactions and primary and secondary battery couples), the investigations of new solvent/electrolyte combinations as well as to new developments in electrochemical engineering.


Cell Design Reflection High Energy Electron Diffraction Electrochemical Machine Surface Enhance Raman Spectrum FM21 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Pletcher, “Industrial Electrochemistry,” Chapman and Hall (1982).Google Scholar
  2. 2.
    A. T. Kuhn, ed., “Industrial Electrochemical Processes, Elsevier (1971).Google Scholar
  3. 3.
    J. O’M. Bockris, B. E. Conway, E. Yeager, and R. E. White, eds., “Comprehensive Treatise of Electrochemistry, Vol. 2, Electrochemical Processing,” Plenum (1981).Google Scholar
  4. 4.
    D. R. Gabe, “Principles of Metal Surface Treatment and Protection,” Pergamon (1978).Google Scholar
  5. 5.
    G. E. F. Brewer, J.Appl.Electrochem., 13: 269 (1983).CrossRefGoogle Scholar
  6. 6.
    P. J. Boden, Phil.Trans.R.Soc.London, A302: 297 (1981).CrossRefGoogle Scholar
  7. 7.
    M. Fleischmann and G. Kelsall, Proceedings of “Electrochemistry in Minerals and Metal Processing,” Electrochemical Society, Vol. 84–10, 572.Google Scholar
  8. 8.
    F. C. Walsh and R. J. Marshall, Surface Technol., 24: 45 (1985).CrossRefGoogle Scholar
  9. 9.
    R. E. W. Jansson, Phil.Trans.R.Soc.London, A302: 285 (1981).CrossRefGoogle Scholar
  10. 10.
    M. Fleischmann and R. E. W. Jansson, Electrochim.Acta, 27: 1023, 1029 (1982).CrossRefGoogle Scholar
  11. 11.
    M. Fleischmann and G. Kelsall, J.Appl.Electrochem., 14: 269 (1984).CrossRefGoogle Scholar
  12. 12.
    A. J. S. Walker and A. A. Wragg, Electrochim.Acta, 22: 1129 (1977).CrossRefGoogle Scholar
  13. 13.
    R. E. Sioda, J.Appl.Electrochem., 7: 135 (1977).CrossRefGoogle Scholar
  14. 14.
    J. S. Newman and W. Tiedemann, Adv.Electrochem. and Electrochem Eng., 11: 353 (1978).Google Scholar
  15. 15.
    M. Fleischmann and R. E. W. Jansson, J.Chem.Technol. and Biotechnol., 30: 351 (1980).CrossRefGoogle Scholar
  16. 16.
    O. Levenspiel, “Chemical Reaction Engineering,” John Wiley and Sons (1972).Google Scholar
  17. 17.
    M. Fleischmann and Z. Ibrísagic, J.Appl.Electrochem., 10:151, 157, 169 (1980).Google Scholar
  18. 18.
    R. E. W. Jansson and R. Marshall, Electrochim.Acta., 27: 823 (1982).Google Scholar
  19. 19.
    A. Bejerano and M. Fleischmann, to be published.Google Scholar
  20. 20.
    M. O. Coulter, ed., “Modern Chlor-alkali Technology,” Vol. I, Ellis Horwood Ltd. (1980).Google Scholar
  21. 21.
    C. Jackson, ed., “Modern Chlor-alkali Technology,” Vol. II, Ellis Horwood Ltd. (1983).Google Scholar
  22. 22.
    C. Jackson, I. M. Girvan, and R. A. Harrison, Electrochemical Society Meeting, Cincinnati, May (1984).Google Scholar
  23. 23.
    M. M. Baizer and D. E. Danly, Chem.Ind., 435, 439 (1979).Google Scholar
  24. 24.
    D. E. Danly, Hydrocarbon Processing, 161 (1981).Google Scholar
  25. 25.
    D. E. Danly, J.Electrochem.Soc., 131: 435C (1984).Google Scholar
  26. 26.
    A. P. Tomilov, S. L. Varshayskii, and I. L. Knunyants, British Pat. 1, 089, 707 (1967).Google Scholar
  27. 27.
    W. V. Childs and H. C. Walters, Hydrocarbon Processing, 139 (1978).Google Scholar
  28. 28.
    C. A. van Eugen, C. A. Hendricks, J. Romioulle, J. Walravens, and A. Verheyden, Chemie et Industrie, 104: 71 (1971).Google Scholar
  29. 29.
    M. M. Baizer and H. Lund, eds., “Organic Electrochemistry,” Marcel Dekker (1983).Google Scholar
  30. 30.
    D. Degner, “Technique of Electroorganic Synthesis - Part III,” N.L. Weinberg and B.V. Vilak, eds., John Wiley (1982).Google Scholar
  31. 31.
    S. Torii, H. Tanaka, and M. Mishima, Bull.Chem.Soc.Japan, 51: 1575 (1978).CrossRefGoogle Scholar
  32. 32.
    T. Beck, “A Survey of Organic Electrolytic Processes,” Electrochemical Technology Corporation, ANL/OEPM-79–5 (1979).Google Scholar
  33. 33.
    D. Degner, “Electroorganic Synthesis,” RSC, Wrexham (1982).Google Scholar
  34. 34.
    H. Millauer, Electroorganic Synthesis,“ RSC, Wrexham (1982).Google Scholar
  35. 35.
    P. M. Robertson, P. Berg, H. Reimann, K. Schleich, and P. Seiler, J.Electrochem.Soc., 130: 591 (1983).CrossRefGoogle Scholar
  36. 36.
    P. Millington, “Electroorganic Synthesis,” RSC, Wrexham (1982).Google Scholar
  37. 37.
    SU cell, Swedish National Dev. Corp., PO Box 34, S-18400, Akersberga, Sweden.Google Scholar
  38. 38.
    DEM Cell, Steetley Eng. Ltd., PO Box 20, Brierley Hill, West Midlands EY6 8XA, England.Google Scholar
  39. 39.
    N. E. Gunawardena and D. Pletcher, Acta Chem.Scand., B37: 549 (1983).CrossRefGoogle Scholar
  40. 40.
    L.-C. Jaing and D. Pletcher, J.Electroanal.Chem., 152: 157 (1983).CrossRefGoogle Scholar
  41. 41.
    L. Eberson and B. Helgee, Chem.Scripta., 5: 47 (1974).Google Scholar
  42. 42.
    S. R. Ellis, D. Pletcher, W. N. Brooks, and K. P. Healy, J.Appl. Electrochem., 13: 735 (1983).CrossRefGoogle Scholar
  43. 43.
    S. R. Ellis, D. Pletcher, P. H. Gamlen, and K. P. Healy, J.Appl. Electrochem., 12: 693 (1982).CrossRefGoogle Scholar
  44. 44.
    A. J. Bard and L. R. Faulkner, “Electrochemical Methods,” John Wiley (1980).Google Scholar
  45. 45.
    P. T. Kissinger and W. R. Heinman, eds., “Laboratory Techniques in Electroanalytical Chemistry,” Marcel Dekker (1984).Google Scholar
  46. 46.
    R. Greef, R. Peat, L. M. Peter, D. Pletcher, and J. Robinson, “Instrumental Methods in Electrochemistry,” Ellis Horwood Ltd. (1985).Google Scholar
  47. 47.
    E. Yeager, J.Electrochem.Soc., 128: 161C (1981).Google Scholar
  48. 48.
    R. K. Chang and T. E. Furtak, eds., “Surface Enhanced Raman Scattering,” Plenum (1981).Google Scholar
  49. 49.
    M. Fleischmann, I. R. Hill, and G. Sundholm, J.Electroanal.Chem., in press.Google Scholar
  50. 50.
    M. Fleischmann, P. Graves, I. R. Hill, A. Oliver, and J. Robinson, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Fleischmann
    • 1
  • D. Pletcher
    • 1
  1. 1.Department of ChemistryThe UniversitySouthamptonUK

Personalised recommendations