Electromagnetic Field Effects on Cell Membranes and Cell Metabolism


After the discovery of galvanism at the end of the 18th century by Galvani and the foundation of electrochemistry by Ritter, since 1796[1] electric magnetic effects on cells, tissues and organisms have been registered leading to the expansion of electrophysiology by Du Bois-Reymond[2] and others during the 19th century[3] parallel to the development of fundamental electrochemistry[4].


Cell Fusion Zona Pellucida Electric Field Pulse Electric Field Pulse Treatment High Pulse Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Ritter, “Beweis, daß ein ständiger Galvanismus den Lebensprozeß im Thierreich begleitet,” Weimar (1798).Google Scholar
  2. 2.
    E. Du Bois-Reymond, “Untersuchungen über thierische Elektrizität,” G. Reimer, Berlin (1848).Google Scholar
  3. 3.
    H. Berg, Historical roots of bioelectrochemistry, Experientia, 36: 1247–1249 (1980).CrossRefGoogle Scholar
  4. 4.
    R. Pethig, “Dielectric and Electronic Properties of Biological Materials,” John Wiley, New York (1979).Google Scholar
  5. 5.
    M. Senda, General Discussion of the 5th Intern. Symp. Bioelectrochem. Bionerg., Weimar, Sept. 3–9 (1979).Google Scholar
  6. 6.
    H. Berg, K. Augsten, E. Bauer, W. Förster, H. -E. Jacob, P. Mühlig, and H. Weber, Possibilities of cell fusion and transformation by electrostimulation, Bioelectrochem.Bioenerg., 12: 119 (1984).CrossRefGoogle Scholar
  7. 7.
    U. Zimmermann, Electric field-mediated fusion and related electrical phenomena, Biochim.Biophys.Acta, 694: 227–277 (1982).Google Scholar
  8. 8.
    H. -E. Jacob, W. Förster, and H. Berg, Microbiological implications of electric field effects. II. Inactivation of yeast cells and repair of their cell envelope, Z.Allgem.Mikrobiol., 21: 225–233 (1981).CrossRefGoogle Scholar
  9. 9.
    M. Senda, J. Takedo, Sh. Abe, and T. Nakamura, Induction of cell fusion of plant protoplasts by electrical stimulation, Plant Cell Physiol., 20: 144 (1979).Google Scholar
  10. 10.
    H. Berg, Biological implications of electric field effects. V. Fusion of blastomeres and blastocysts of mouse embryos, Bioelectrochem. Bioenerg., 9: 223–228 (1982).CrossRefGoogle Scholar
  11. 11.
    H. Berg, A. Kurischko, and R. Freund, Biological implications of electric field effects. VI. Fusion of mouse blastomeres without and within zona pellucida, Studia biophysica, 94: 103–104 (1983).Google Scholar
  12. 12.
    E. Neumann and K. Rosenheck, Permeability changes induced by electric impulses in vesicular membranes, J.Membr.Biol., 10: 279–290 (1972).CrossRefGoogle Scholar
  13. 13.
    U. Zimmermann, J. Schulz, and G. Pilwat, Transcullular ion flow in Escherichia coli.B and electrical sizing of bacterias, Biophys.J., 13: 1005–1013 (1973).CrossRefGoogle Scholar
  14. 14.
    K. Kinosita and T. Tsong, Voltage-induced pore formation and hemolysis of human erythrocytes, Biochim.Biophys.Acta, 471: 227–242 (1977).CrossRefGoogle Scholar
  15. 15.
    P. Lindner, E. Neumann, and K. Rosenheck, Kinetics of permeability changes induced by electric impulses in chromaffin granules, J.Membr.Biol., 32: 231–254 (1977).CrossRefGoogle Scholar
  16. 16.
    P. Mühlig, W. Förster, H. -E. Jacob, and H. Berg, Cell membrane permeation of the anthracycline violamycin BI induced by an electric field pulse, Poster on the X Jena Symp., Molecular-biological Mechanisms of Antitumor Antibiotics Actions, Weimar (1984), Studia biophysica, (1985) in preparation.Google Scholar
  17. 17.
    N. Shivarova, W. Förster, H. -E. Jacob and R. Grigorova, Microbiological implications of electric field effects. VII. Stimulation of plasmid transformation of Bacillus cereus protoplasts by electric field pulses, Z.Allg.Mikrobiol., 23: 595–599 (1983).CrossRefGoogle Scholar
  18. 18.
    E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, Gene transfer into mouse lyoma cells by electroporation in high electric fields, The EMBO Journal, 1: 841–845 (1982).Google Scholar
  19. 19.
    N. Shivarova, W. Förster, H. -E. Jacob, and R. Grigorova, Z.Allgem. Mikrobiol., 23: 595 (1983).CrossRefGoogle Scholar
  20. 20.
    U. Zimmermann and J. Vienken, in: “Cell Fusion, Gene Transfer and Transformation,” R. Beers and E. Bassett, eds., p. 171, Ravens Press, New York (1984).Google Scholar
  21. 21.
    H. Weber, W. Förster, H. Berg, and H. -E. Jacob, Parasexual hybridization of yeasts by electric field stimulated fusion of protoplasts, Current Genetics, 4: 165 (1981).CrossRefGoogle Scholar
  22. 22.
    H. J. Halfmann, C. C. Emeis, and U. Zimmermann, Electro-fusion and genetic analysis of fusion products of haploid and polyploid Saccharomyces yeast cells, FEMS Microbiology Letters, 20: 13–16 (1983).CrossRefGoogle Scholar
  23. 23.
    C. A. L. Bassett, A. A. Pilla, and R. J. Pawluk, A nonoperative salvage of surgically resistant pseudarthroses and nonunions by pulsing electromagnetic fields, Clin.Orthop., 124: 128 (1977).Google Scholar
  24. 24.
    A. Pilla, Bioelectrochemistry, ions, surfaces, membranes, Adv.Chem., 188: 126 (1970).Google Scholar
  25. 25.
    H. -E. Jacob, F. Siegemund, E. Bauer, and P. Mühlig, Fusion of plant protoplasts by dielectrophoresis and electric field pulse technique, Studia biophysica, 94: 99–100 (1983).Google Scholar
  26. 26.
    M. Senda, H. Morikawa, and J. Takeda, Proc. 5th Internat. Congr. Plant. Tissues Cult., p. 615 (1982).Google Scholar
  27. 27.
    G. Pilwat, H. -P. Richter, and U. Zimmermann, Giant culture cells by electric field-induced fusion, FEBS Letters, 133: 169 (1981).CrossRefGoogle Scholar
  28. 28.
    J. Teissie, U. P. Knutson, T. Y. Tsong, and M. D. Lane, Electric pulse-induced of 3T3 cells in monolayer culture, Science, 216: 537–538 (1982).CrossRefGoogle Scholar
  29. 29.
    U. Zimmermann and G. Köppers, Cell fusion by electromagnetic waves and its possible relevance for evolution, Naturwiss., 68: 577 (1981).CrossRefGoogle Scholar
  30. 30.
    J. Teissie, B. E. Knox, T. Y. Tsong, and J. Wehrle, Synethesis of adenosine triphosphate in respiration-inhibited submitochrondria particles induced by microsecond electric pulses, Proc.Natl.Acad. Sci.USA, 78: 7473–7477 (1081).CrossRefGoogle Scholar
  31. 31.
    H. -P. Richter, P. Scheurich, and U. Zimmermann, Electric field-induced of sea urchin eggs, Develop.Growth and Differ., 23: 479 (1981).CrossRefGoogle Scholar
  32. 32.
    D. Berg, I. Schumann, and A. Stelzner, Electrically stimulated fusion between myeloma cells and spleen cells, Studia biophysica, 94: 101–102 (1983).Google Scholar
  33. 33.
    A. Kurischko and H. Berg, 2nd Seminar. Electrostimulated Cell Fusion and Transformation, Jena, Sept. (1984).Google Scholar
  34. 34.
    S. Walliser and K. Redmann, Membrane polarization as a candidate for signalling altered cell functions, Studia biophysica, 94: 105–106 (1983).Google Scholar
  35. 35.
    M. Senda, Discussion at the UNESCO Forum Electrochemistry in Research and Development, Paris, June 1984.Google Scholar
  36. 36.
    A. A. Pilla, P. Sechaud, and B. McLeod, Electrochemical and electrical aspects of low-frequency electromagnetic current induction in biological systems, J.Biol.Physics, 11: 51 (1983).CrossRefGoogle Scholar
  37. 37.
    G. Schwarz, On the physico-chemical basis of voltage-dependent molecular gating mechanisms in biological membranes, J.Membrane Biol., 43: 127–148 (1978).CrossRefGoogle Scholar
  38. 38.
    E. Neumann, Electric field effects in biopolymer structures and electrical-chemical memory recording, in: “Ions in Macromolecular and Biological Systems,” D. H. Everett and B. Vincent, eds., Scientechnica, Bristol (1978).Google Scholar
  39. 39.
    S. I. Sukharev, L. V. Chernomordik I. G. Abidor, and Yu. A. Chizmadzhev, 466-Effects of UOZ ions on the properties of bilayer lipid membranes, Bioelectrochem.Bioenerg., 9: 133–140 (1982).CrossRefGoogle Scholar
  40. 40.
    J. Weaver and R. Mintzer, Decreased bilayer stability due to trans-membrane potentials, Physics Letters, 86A: 57 (1981).CrossRefGoogle Scholar
  41. 41.
    S. D. Smith and J. M. Feola, Effect of repetition rate and duty cycle on pulsed magnetic field modulation of LSA tumors in mice, J.Electrochem.Soc., 130: 1210 (1983).CrossRefGoogle Scholar
  42. 42.
    S. D. Smith and A. A. Pilla, Modulation of new limb regeneration by electromagnetically induced low level pulsating current, in: “Mechanisms of Growth Control,” R. O. Becker, ed., Thomas Springfield, 11:137 (1981).Google Scholar
  43. 43.
    A. A. Pilla, Electrochemical information transfer and its possible role in the control of cell function, in: “Electrical Properties of Bone and Cartilage,” C. T. Brighton, J.-Black, and S. R. Pollack, eds., Grune and Stratton, New York, p. 455 (1979).Google Scholar
  44. 44.
    L. A. Norton, L. A. Bourett, R. J. Majeska, and G. A. Rodan, Adherence and DNA synthesis changes in hard tissues cell culture produced by electric perturbation, in: “Electrical Properties of Bone and Cartilage,” C. T. Brighton, J. Black, and S. R. Pollack, eds., Grune and Stratton, New York, p. 443 (1979).Google Scholar
  45. 45.
    B. Sisken, B. McLeod, and A. A. Pilla, PMEF, DC and neuronal regeneration: Effect of electric field geometry, in: “Electrochemistry, Membranes, Cells and the Electrochemical Modulation of Cell and Tissue Function,” A. A. Pilla and A. Boynton, eds., Springer Verlag (1984).Google Scholar
  46. 46.
    M. Schwartz and D. Neumann, Neuritic outgrowth from regenerative goldfish retina is affected by pulsed electromagnetic fields, Trans. Bioelectr.Repair and Growth Soc., 1: 55 (1981).Google Scholar
  47. 47.
    A. A. Pilla, Electrochemical information transfer at living cell membranes, Ann.NY.Acad.Sci., 238: 149 (1974).CrossRefGoogle Scholar
  48. 48.
    A. A. Pilla, Mechanism of electrochemical phenomenon in tissue repair and growth, Bioelectrochem.Bioenerg., 1: 227 (1974).CrossRefGoogle Scholar
  49. 49.
    A. Chiabrera, M. Hinsenkamp, A. A. Pilla, J. Ryaby, D. Ponta, A. Belmont, F. Beltrame, M. Grattarola, and C. Nicolini, Cytofluorometry of electromagnetically controlled cell differentiation, J.Histochem.Cytochem., 27: 375 (1979).CrossRefGoogle Scholar
  50. 50.
    H. Murray, W. J. O’Brien, and M. Oregel, Pulsed electromagnetic fields and peripheral nerve regeneration in the cat, Anat.Rec., 205: 137A (1983).Google Scholar
  51. 51.
    P. H. Delpert, N. Cheng, M. J. Hoogmartens, J. C. Mulier, W. Sansen, and W. De Loecker, The effects of pulsed electromagnetic fields on metabolism in rat skin, 3rd Annual BRAGGS, San Francisco, California, p.67, Oct. (1983).Google Scholar
  52. 52.
    R. Korenstein, D. Somjen, F. Laub, H. Fischler, and Y. Binderman, Electric stimulation of bone cells in culture, VII. Intern. Symp. on Bioelectrochem., Stuttgart, July (1983).Google Scholar
  53. 53.
    H. P. Große and E. Bauer, unpublished results.Google Scholar
  54. 54.
    E. Selegny, J. M. Valleton, and J. C. Vincent, Monitoring of mono-stable systems and memory in multistable systems, Bioelectrochem. Bioenerg., 10: 133 (1983).CrossRefGoogle Scholar
  55. 55.
    A. A. Pilla, The rate modulation of cell and tissue function via electrochemical information, in: “Mechanisms of Growth Control,” R. O. Becker, ed., Charles C. Thomas, Springfield, p. 211 (1981).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • H. Berg
    • 1
  1. 1.Central Institute of Microbiology and Experimental Therapy Department of Biophysical ChemistryAcademy of Sciences of the GDRJenaGDR

Personalised recommendations