It should be said in advance that the title of the paper does not reflect its contents accurately. I shall not discuss any of the problems connected with the use of membranes in applied electrochemistry. Above all, this is because I am not expert in that field and for that reason probably see no new scientific problems. Even a cursory glance at the immense literature in that field confirms the view that the task now is that of seeking optimal technological solutions. At the same time the advances made by modern biology have pushed to the forefront a new object — cell membranes, the role of which has been underestimated in the past. It was believed that their main function was to serve as a barrier, i.e. their job was to maintain a constant and different content inside and outside the cell. Gradually it became clear that the membranes are responsible for many of the principal functions of the living cell. Membranes introduced in modern biology the concept of vectorial reactions, they compelled scientists to revise their views in bioenergetics, so that now there is every reason to regard the mitochondria — the power stations of the cell — as a fuel cell. The triumph of the membrane theory compelled scientists to turn to electrochemistry, and, at the same time, stimulated the interest of electrochemists in biology. That is why UNESCO added to the long list of traditional sciences a new one which was designated as biological electrochemistry.


Bilayer Lipid Membrane Electric Breakdown Modern Biology Planar Lipid Bilayer Spontaneous Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Milazzo, Bioelectrochemistry and bioenergetics. An interdisciplinary survey, in: “Bioelectrochemistry,” Vol. 1, G. Milazzo and M. Blank, eds., Plenum Publishing Co. (1983).Google Scholar
  2. 2.
    G. Dryhurst, “Electrochemistry of Biological Molecules,” Academic Press, New York — London (1977).Google Scholar
  3. 3.
    H. W. Nürnberg, Applications of advanced voltammetric methods in bio-electrochemistry, in: “Bioelectrochemistry,” Vol. 1, G. Milazzo and M. Blank, ed., Plenum Publishing Co. (1983).Google Scholar
  4. 4.
    J. Koryta, “Ions, Electrodes and Membranes,” J. Wiley & Sons, Chichester (1982).Google Scholar
  5. 5.
    O. A. Alvarez and R. Latorre, Voltage dependent capacitance in lipid bilayer made from monolayers, Biophys.J., 21: 1 (1978).CrossRefGoogle Scholar
  6. 6.
    P. Schoch, D. Sargent, and R. Scwyzer, Capacitance and conductance as tools for the measurement of asymmetric surface potentials and energy barriers of lipid bilayer membranes, J.Membrane Biol., 46: 71 (1979).CrossRefGoogle Scholar
  7. 7.
    Yu. A. Chizmadzhev and I. G. Abidor, Bilayer lipid membranes in strong electric fields, Bioelectrochem.Bioenerget., 7: 83 (1980).CrossRefGoogle Scholar
  8. 8.
    V. S. Sokolov and V. G. Kuzmin, Measurement of surface potential difference of bilayers by second harmonigue of capacitive current, Biofisika, 25: 170 (1980) (in Russian).Google Scholar
  9. 9.
    S. McLaughlin, N. Mubrine, T. Gresalfi, G. Vaio, and A. McLaughlin, Adsorption of divalent cations to bilayer membrane containing PS, J.Gen.Physiol., 77 (4): 445 (1981).CrossRefGoogle Scholar
  10. 10.
    N. S. Matinyan, I. A. Ershler, and I. G. Abidor, Proton equilibrium on the surface of lipid bilayer, Biologicheskie Membrany, 1: 254 (1984).Google Scholar
  11. 11.
    N. S. Matinyan and I. G. Abidor, Proton equilibrium on lipid bilayer, Doklady Acad.Nauk,USSR, 274: 1226 (1984). (in Russian)Google Scholar
  12. 12.
    Yu. A. Ovchinnikov, V. T. Ivanov, and A. M. Shkrob, “Membrane Active Complexions,” Elsevier, Amsterdam (1974).Google Scholar
  13. 13.
    S. Ciani, G. Laprade, G. Eisenman, R. Laprade, and G. Szabo, Theoretical analysis of carrier-mediated electrical properties of bilayer membranes, in: “Membranes — A Series of Advances,” Vol. 2, G. Eisenman, ed., Marcel Dekker, New York (1972).Google Scholar
  14. 14.
    V. S. Markin and Yu. A. Chismadjev, “Induced Ion Transport,” Nauka, Moscow (1974). (in Russian)Google Scholar
  15. 15.
    P. Läuger, R. Benz, G. Stark, E. Bamberg, P. C. Iordan, A. Fahr, and W. Brock, Relaxation studies of ion transport systems in lipid bilayer membranes, Rev.Biophys., 14: 513 (1981).CrossRefGoogle Scholar
  16. 16.
    Yu. A. Chismadjev and S. Kh. Aityan, Ion transport across sodium channels in biological membranes, J.theor.Biol., 64: 429 (1977).CrossRefGoogle Scholar
  17. 17.
    W. Fischer, I. Brickmann, and P. Läuger, Molecular dynamics study of ion transport in transmembrane protein channels, Biophys.Chem., 13: 105 (1981).CrossRefGoogle Scholar
  18. 18.
    S. Kh. Aityan and Yu. A. Chismadjev, Molecular dynamics of water movement across gramicidin channel, Gen.Physiol.Biophys. (in press).Google Scholar
  19. 19.
    F. H. Stillinger and A. Rahman, Improved simulation of liquid water by molecular dynamics, J.Chem.Phys., 60: 1545 (1974).CrossRefGoogle Scholar
  20. 20.
    B. K. Krueger, J. F. Worley, and R. J. French, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes, Nature, 303: 172 (1983).CrossRefGoogle Scholar
  21. 21.
    R. Latorre, C. VergaTa, and C. Higalgo, Reconstitution in planar lipid bilayers of a Ca2+ -dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle, PNAS, 79: 805 (1982).CrossRefGoogle Scholar
  22. 22.
    H. Shindler and J. P. Rosenbusch, Matrix protein in planar membranes, PNAS, 78: 2302 (1981).CrossRefGoogle Scholar
  23. 23.
    O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch.Eur.J.Physiol., 391: 85 (1981).CrossRefGoogle Scholar
  24. 24.
    U. Wilmsen, C. Methfessel, W. Hanke, and G. Boheim, Channel current fluctuation studies with solvent-free lipid bilayers using NeherSakmann pipettes, in: “Physical Chemistry of Transmembrane Ion Motions,” G. Spach, ed., Elsevier Science Publishers, Amsterdam (1983).Google Scholar
  25. 25.
    U. Zimmermann, Electric field-mediated fusion and related electrical phenomena, Biochim.Biophys.Acta, 694: 227 (1982).Google Scholar
  26. 26.
    R. Benz, F. Beckers, and U. Zimmermann, Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study, J.Membrane Biol., 48: 181 (1979).CrossRefGoogle Scholar
  27. 27.
    I. G. Abidor, V. B. Arakelyan, L. V. Chernomordik, Yu. A. Chizmadzhev, V. F. Pastushenko, and M. R. Tarasevich, Electric breakdown of bilayer lipid membranes, Bioelectrochem.Bioenerget., 6: 37 (1979).CrossRefGoogle Scholar
  28. 28.
    V. F. Pastushenko, Yu. A. Chizmadzhev, and V. B. Arakelyan, Electric breakdown of bilayer lipid membranes. Calculation of the membrane lifetime in the steady-state diffusion approximation, Bioelectrochem.Bioenerget., 6: 53 (1979).CrossRefGoogle Scholar
  29. 29.
    L. V. Chernomordik, S. I. Sukharev, I. G. Abidor, and Yu. A. Chizmadzhev, Breakdown of lipid bilayer membranes in an electric field, Biochem.Biophys.Acta, 736: 203 (1983).CrossRefGoogle Scholar
  30. 30.
    V. S. Markin and M. M. Kozlov, Osmotic lysis of lipid vesicles, Biologicheskie Membrany, 1 (1984) (in Russian).Google Scholar
  31. 31.
    E. A. Liberman and V. A. Nenashev, Model of cell junction of lipid bilayers, Biofizika, 17: 1017 (1972).Google Scholar
  32. 32.
    E. Neher, Asymmetric membranes resulting from the fusion of two black lipid bilayers, Biochim.Biophys.Acta, 373: 328 (1974).Google Scholar
  33. 33.
    G. B. Melikyan, I. G. Abi dor, L. V. Chernomordik, and L. M. Chailakhyan, Electrostimulated fusion and fission of bilayer lipid membranes, Biochim.Biophys.Acta, 730: 395 (1983).CrossRefGoogle Scholar
  34. 34.
    V. S. Markin and M. M. Kozlov, On the first stage of membrane fusion, Biofizika, 28: 72 (1983).Google Scholar
  35. 35.
    M. M. Kozlov and V. S. Markin, Probable mechanism of membrane fusion, Biofizika, 28: 242 (1983)(In Russian)Google Scholar
  36. 36.
    V. S. Markin and M. M. Kozlov, Gen.Physiol.Biophys., 2: 201 (1983).Google Scholar
  37. 37.
    L. V. Chernomordik, M. M. Kozlov, G. B. Melikyan, I. G. Abidor, V. S. Markin, and Yu. A. Chismadjev, The shape of lipid molecules and monolayer fusion of the membranes, Biologicheskie Membrany, 1: 411 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Yu. A. Chizmadjev
    • 1
  1. 1.Frumkin Institute of ElectrochemistryUSSR Academy of SciencesMoscowUSSR

Personalised recommendations