Advertisement

Abstract

Electrochemical methods of analysis have seen wide application as in vivo biosensors. Several features of electroanalytical methods have enhanced their utility in these applications. Electrochemical techniques show sufficient sensitivity and selectivity that in many instances they can be used directly to measure chemical activity. In addition, the probes can be miniaturized so the measurements cause minimum trauma to the tissue.

Keywords

Caudate Nucleus Extracellular Fluid Dihydroxyphenylacetic Acid Millisecond Time Scale Carbon Fiber Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Moirell, Science, 210:263–267 (1980).CrossRefGoogle Scholar
  2. 2.
    R. A. Durst, “Ion Selective Electrodes,” National Bureau of Standards Special Publication, 314 (1969).Google Scholar
  3. 3.
    G. A. Rechritz, Anal.Chem., 54:1194A–1200A (1982).CrossRefGoogle Scholar
  4. 4.
    J. L. Walker, Anal.Chem., 43:83A–93A (1971).CrossRefGoogle Scholar
  5. 5.
    R. Y. Tsien and T. J. Rink, J.Neurosci.Methods, 4:75 (1981).CrossRefGoogle Scholar
  6. 6.
    M. V. Thomas, “Techniques in Calcium Research,” Academic Press, New York (1982).Google Scholar
  7. 7.
    E. Ujec, O. Keller, N. Kriz, V. Pavlik, and J. Machek, Bioelectrochem. Bioenerg., 7:363–369 (1980).CrossRefGoogle Scholar
  8. 8.
    R. C. Thomas, “Ion-sensitive Intracellular Microelectrodes,” Academic Press, New York (1978).Google Scholar
  9. 9.
    L. R. Faulkner and A. J. Bard, “Electrochemical Methods, Fundamentals and Applications,” J. Wiley and Sons, New York (1980).Google Scholar
  10. 10.
    R. M. Wighton, Anal.Chem., 53:1125A–1130A (1981).CrossRefGoogle Scholar
  11. 11.
    J. Koryta, M. Brezina, J. Pradac, and J. Pradacova, in: “Electroanalytical Chemistry,” A. J. Bard, ed., Vol.11, M. Dekker, New York (1979).Google Scholar
  12. 12.
    L. C. Clark and G. Sachs, Ann.NY.Acad.Sci., 148:133–153 (1968).CrossRefGoogle Scholar
  13. 13.
    K. D. Wise, R. B. Smart, and K. H. Mancy, Anal.Chim.Acta, 116:297–305 (1980).CrossRefGoogle Scholar
  14. 14.
    J. S. Ultman, E. Firourtale, and M. J. Skerpon, J.Electroanal.Chem., 127:29–66 (1981).CrossRefGoogle Scholar
  15. 15.
    P. W. Carr and L. D. Bowers, “Immobilized Enzymes in Analytical and Clinical Chemistry,” J. Wiley and Sons, New York (1980).Google Scholar
  16. 16.
    R. Plonsey, “Bioelectric Phenomena,” McGraw Hill, New York (1969).Google Scholar
  17. 17.
    H. O’Doherty, J. F. Garcia-Diaz, W. McD. Armstrong, Science, 203:1349–1351 (1979).CrossRefGoogle Scholar
  18. 18.
    E. Sykova, J.Electroanal.Chem., 116:231–246 (1980).CrossRefGoogle Scholar
  19. 19.
    C. Nicholson, Neurosci.Res.Progr.Bull., 18:183–322 (1980).Google Scholar
  20. 20.
    R. N. Adams, Anal.Chem., 48:1126A–1138A (1976).CrossRefGoogle Scholar
  21. 21.
    J. R. Cooper, F. E. Bloom, and R. H. Roth, “The Biochemical Basis of Neuropharmacology,” Oxford Univ. Press, New York (1982).Google Scholar
  22. 22.
    R. D. Meyers, ed., in: “Methods in Psychology,” 1:169–211, Academic Press, London (1972).Google Scholar
  23. 23.
    T. Zetterstrom, T. Sharp, C. A. Marsden, and U. Ungerstedt, J.Neurochem., 41:1769–1773 (1983).CrossRefGoogle Scholar
  24. 24.
    J. B. Justice, S. A. Wages, A. C. Michael, K. D. Blakely, and D. B. Neill, J.Liquid Chrom., 5:1873–1896 (1983).Google Scholar
  25. 25.
    A. G. Ewing, M. A. Dayton, and R. M. Wightman, Anal.Chem., 53:1842–1847 (1981).CrossRefGoogle Scholar
  26. 26.
    M. A. Dayton, A. G. Ewing, and R. M. Wightman, J.Electroanal.Chem., 146:189–200 (1982).CrossRefGoogle Scholar
  27. 27.
    F. Hefti and D. Felin, J.Neurosci.Meth., 7:151–156 (1983).CrossRefGoogle Scholar
  28. 28.
    P. M. Kovach, A. G. Ewing, R. L. Wilson, and R. M. Wightman, J.Neursci.Methods, 10:215–227 (1984).CrossRefGoogle Scholar
  29. 29.
    H. -Y. Cheng, J. Schenk, R. Huff, and R. N. Adams, J.Electroanal. Chem., 100:23–31 (1979).CrossRefGoogle Scholar
  30. 30.
    M. E. Rice, G. A. Gerhardt, P. M. Hierl, G. Nagy, and R. N. Adams, Society for Neuroscience 13th Annual Meeting (1983), Abstract No.998.Google Scholar
  31. 31.
    J. O. Schenk, E. Miller, M. E. Rice, and R. N. Adams, Brain Res., 277:1–8 (1983).CrossRefGoogle Scholar
  32. 32.
    F. Gonon, M. Buda, R. Cespuglio, M. Jouvet, and J. -F. Pujol, Nature, 286:902–904 (1980).CrossRefGoogle Scholar
  33. 33.
    A. G. Ewing, R. M. Wightman, and M. A. Dayton, Brain Res., 249:361–370 (1982).CrossRefGoogle Scholar
  34. 34.
    A. G. Ewing, J. C. Bigelow, and R. M. Wightman, Science, 221:169–170 (1983).CrossRefGoogle Scholar
  35. 35.
    J. A. Clemens and L. A. Phebus, Brain Res., 267:183–186 (1983).CrossRefGoogle Scholar
  36. 36.
    W. J. Albery, N. J. Godelard, T. W. Beck, M. Fillenz, and R. D. O’Neill, J.Electroanal.Chem., 161:221–233 (1984).CrossRefGoogle Scholar
  37. 37.
    G. A. Gerhardt, A. F. Oke, G. Nagy, B. Moghaddam, and R. N. Adams, Brain Res., 290:390–395 (1984).CrossRefGoogle Scholar
  38. 38.
    F. W. L. Kerr and K. L. Casey, Neurosci.Res.Prog.Bull., 16:6–174 (1978).Google Scholar
  39. 39.
    R. Schmukler and A. A. Pilla, J.Electrochem.Soc., 129:526 (1982).CrossRefGoogle Scholar
  40. 40.
    H. Assailly, J. -D. Mouet, Y. Goureau, P. Christel, and A. A. Pilla, Bioelectrochem.Bioenerg., 8:515 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. M. Wightman
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations