Analytical Bioelectrochemistry

  • D. R. Thévenot


Among the various analytical methods using biochemistry or physiochemistry bioelectrochemistry is one of the most active and rapidly developing fields. It is indeed rarely necessary to add any chemical in the sample, thus allowing direct in vivo application of these methods, and their selectivity and sensitivity is often sufficient to avoid any separative or concentrative step. Besides the direct monitoring of a given species and of its reacting properties analytical bioelectrochemistry is also able to follow the heterogeous reactions occurring at a metal-solution inter-face with biopolymers such as nucleic acids or proteins and evaluate their conformation[1,2].


Immobilize Enzyme Glucose Sensor Enzyme Electrode Life Support System Intravenous Glucose Tolerance Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1..
    H. W. Nürnberg, “Bioelectrochemistry I,” G. Milazzo and M. Blank, eds., Plenum Press, London (1983).Google Scholar
  2. 2.
    C. Jacubowitz, L. T. Yu, and J. A. Reynaud, Electrochem.Acta, 28(1):57 (1983).CrossRefGoogle Scholar
  3. 3.
    W. F. Smyth, “Polarography of Molecules of Biological Significance,” p.326, Academic Press, London (1979).Google Scholar
  4. 4.
    W. F. Smyth, Electroanalysis in hygiene, environmental, clinical and pharmaceutical chemistry, Anal.Chem.Symp.Ser., 2:473 (1980).Google Scholar
  5. 5.
    W. J. Albery, M. Fillenz, N. J. Goddard, M. E. McIntyre, and R. D. O’Neill, J.Physiol., 132:107 (1982).Google Scholar
  6. 6.
    R. N. Adams and C. A. Marsden, “Handbook of Psychopharmacology,” Plenum Press, 15:1–74 (1982).Google Scholar
  7. 7.
    W. N. Brooks, C. E. W. Hahn, P. Foex, P. Maynard, and W. J. Albery, Br.J.Anaesth., 52:715–722 (1980).CrossRefGoogle Scholar
  8. 8.
    R. M. Wightman, this volume p. (1985).Google Scholar
  9. 9.
    G. J. Patriarche and J. C. Vire, Anal.Chem.Symp.Ser., 2:209–225 (1980).Google Scholar
  10. 10.
    S. Bruckenstein and D. C. Johnson, Anal.Chem., 36:2186 (1964).CrossRefGoogle Scholar
  11. 11.
    W. J. Albery, S. Bruckenstein, and D. C. Johson, Trans.Faraday Soc., 62:1938 (1966).CrossRefGoogle Scholar
  12. 12.
    W. J. Albery and M. L. Hitchman, “Ring-disc Electrodes,” Oxford Science Research Papers, Clarendon Press, Oxford (1971).Google Scholar
  13. 13.
    F. Rauwel and D. R. Thévenot, J.Applied Electrochem., 6:119–126 (1976).CrossRefGoogle Scholar
  14. 14.
    F. Rauwel and D. R. Thévenot, Bioelectrochem.Bioenergetics, 3:284–301 (1976).CrossRefGoogle Scholar
  15. 15.
    F. Rauwel and D. R. Thévenot, J.Electroanal.Chem., 75:579–593 (1977).CrossRefGoogle Scholar
  16. 16.
    W. J. Albery, N. J. Godelard, T. W. Beck, M. Fillenz, and R. D. O’Neill, J.Electroanal.Chem., 161:221–233 (1984).CrossRefGoogle Scholar
  17. 17.
    N. Lakshiminarayanaiah, “Membrane Electrodes,” p.368, Academic Press, New York (1976).Google Scholar
  18. 18.
    K. Camman, “Das Arbeiten mit Ionenselektiven Elektroden,” p.227, Springer Verlag, Berlin (1977).CrossRefGoogle Scholar
  19. 19.
    P. C. Meier, D. Ammann, H. F. Osswald, and W. Simon, Med.Prog.Technol., 5:1–12 (1977).Google Scholar
  20. 20.
    P. Bergveld and N. F. de Rooij, “Proc. Int. Conf. on Monitoring Vital Parameters,” p.113, Nijmegen, Karger (1981).Google Scholar
  21. 21.
    J. D. Czaban, A. D. Cornier, and K. D. Legg, Clin.Chem., 28:1936–45 (1982).Google Scholar
  22. 22.
    J. H. Ladenson, F. S. Apple, J. J. Aguanno, and D. D. Koch, Clin.Chem., 28:2383 (1983).Google Scholar
  23. 23.
    W.M.D. Armstrong, W. McD. Wojtkowski, and W. R. Bixenman, Biochim. Biophys.Acta, 465:165–170 (1977).CrossRefGoogle Scholar
  24. 24.
    R. A. Steiner, M. Ochme, D. Amman, and W. Simon, Anal.Chem., 51(3):351 (1979).CrossRefGoogle Scholar
  25. 25.
    W. Crowe, A. Mayevsky, and L. Mela, Am.J.Physiol., 233(1):C56–C60 (1977).Google Scholar
  26. 26.
    K. Shimada, Y. Yano, K. Shibatani, Y. Komoto, M. Esashi, and T. Matsuo, Med.Biol.Eng.Comp., 18:741 (1981).CrossRefGoogle Scholar
  27. 27.
    G. Koning and S. J. Schepel, In: “Proc. Int. Meeting on Chemical Sensors,” T. Seiyama, K. Fueki, J. Shiokawa, and S. Suzuki, eds., p.597–602, Elsevier, Amsterdam (1983).Google Scholar
  28. 28.
    M. R. Neuman, “Theory Design and Biomedical Applications of Solid-state Chemical Sensors,” C.R.C. Press, p.277–287.Google Scholar
  29. 29.
    M. A. Jensen and G. A. Rechnitz, Anal.Chem., 51(12):1972 (1979).CrossRefGoogle Scholar
  30. 30.
    M. E. Lopez and G. A. Rechnitz, Anal.Chem., 54(12):2085 (1982).CrossRefGoogle Scholar
  31. 31.
    C. E. W. Hahn, J.Phys.Sci.Instrum., 13:470 (1982).CrossRefGoogle Scholar
  32. 32.
    H. P. Kimmich, F. Kreuzer, J. G. Spaan, K. Jank, de J. Hemptinne, and M. Demeester, Adv.Exp.Med.Biol., 75:33–40 (1976).Google Scholar
  33. 33.
    B. Hagihara, K. Kurosawa, S. Hashimoto, H. Sugimoto, and T. Sugimoto, In: “Proc. Int. Meeting on Chemical Sensors,” T. Seiyama, K. Fueki, J. Shiokawa, and S. Suzuki, eds., p.591–596, Elsevier, Amsterdam (1983).Google Scholar
  34. 34.
    R. Huch, D. W. Lubbers, and A. Huch, Arch.Disease in Childhood, 49:213 (1974).CrossRefGoogle Scholar
  35. 35.
    J. L. Peabody, G. A. Gregory, M. M. Willis, and W. H. Tooley, Am.Rev. Respir.Disease, 118:83–87 (1978).Google Scholar
  36. 36.
    O. Löfgren and L. Jacobson, Acta.Paediatr.Scand., 68:789 (1979).CrossRefGoogle Scholar
  37. 37.
    B. Hagihara, K. Kogo, K. Nakayama, S. Shiraishi, M. McCabe, and S. Ohkawa, Jap.J.Med.Electr.Biol.Eng., 18:262 (1980).Google Scholar
  38. 38.
    P. Eberhard and R. Schaffer, J.Clin.En., 6:36 (1981).Google Scholar
  39. 39.
    G. G. Guilbault, In: “Immobilized Enzymes, Antibodies and Peptides,” H. H. Weetall, ed., p.293–417, Dekker, New York (1975).Google Scholar
  40. 40.
    D. R. Thévenot, Diabetes Care, 5(30):184–189 (1982).Google Scholar
  41. 41.
    G. Rechnitz, Science, 214:287–291 (1981).CrossRefGoogle Scholar
  42. 42.
    S. Suzuki and I. Karube, Applied Biochem.Bioeng., 3:145–174 (1981).Google Scholar
  43. 43.
    L. C. Clark and C. Lyons, Ann.NY.Acad.Sci., 102:29–45 (1962).CrossRefGoogle Scholar
  44. 44.
    D. R. Thévenot, P. R. Coulet, R. Sternberg, and D. C. Gautheron, Bioelectrochem.Bioenerg., 5:548–553 (1978).CrossRefGoogle Scholar
  45. 45.
    D. R. Thévenot, R. Sternberg, P. R. Coulet, J. Laurent, and D. C. Gautheron, Anal.Chem., 51:96–100 (1979).CrossRefGoogle Scholar
  46. 46.
    J. L. Romette, B. Froment, and D. Thomas, Clin.Chim.Acta, 95:249 (1979).CrossRefGoogle Scholar
  47. 47.
    G. Durliat, M. Comtat, J. Mehenc, and A. Baudras, Anal.Chim.Acta, 85:31–40 (1976).CrossRefGoogle Scholar
  48. 48.
    P. Abel, U. Fischer, and E. J. Freyse, Life support systems, J.Europ.Soc.Artif.Organs, supp1.1, 94–97 (1982).Google Scholar
  49. 49.
    P. Abel, U. Fischer, A. Muller, and E. J. Freyse, Life support systems, J.Europ.Soc.Artif.Organs, suppl.1, 45–48 (1983).Google Scholar
  50. 50.
    M. Shichiri, R. Kawamori, Y. Yamasaki, N. Hakui, and H. Abe, The Lancet, pp.1129–1131 (1982).Google Scholar
  51. 51.
    M. Shichiri and R. Kawamori, Diabetologia, 24:179–184 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • D. R. Thévenot
    • 1
  1. 1.Laboratoire de BioélectrochimieUniversité Paris-Val de MarneCréteil CedexFrance

Personalised recommendations