Advertisement

Applications and Potentialities of Voltammetry in Environmental Chemistry of Ecotoxic Metals

  • H. W. Nürnberg

Abstract

A large and still increasing amount of potentially and actually hazardous chemicals is emitted from a variety of anthropogenic sources into the environment. Among these environmental chemicals a number of heavy metals and some metalloids have gained particular significance with respect to their ecotoxicity[1,2]. Some metals, e.g. Cd, Pb, Hg and As (III), have a significant toxicity per se and constitute thus always an ecotoxic risk, if they are abundant in an ecosystem above their natural base levels. Other metals, e.g. Cu, Zn, Ni, Co, Se have for plants, organisms and man indispensable essential functions below threshold levels, which depend on the metal and organism, but will also exert toxic effects above the respective threshold levels[1,3,6,].

Keywords

Heavy Metal Trace Metal Dissolve Organic Matter Differential Pulse Voltammetric Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Merian, M. Geldmacher-v. Mallinckrodt, G. Machata, H. W. Nürnberg, H. Schlipköter and W. Stumm, eds., “Metalle in der Umwelt,” Verlag Chemie, Weinheim (1984).Google Scholar
  2. 2.
    U. Förstner and G. T. W. Wittmann, “Metal Pollution in the Aquatic Environment,” Springer, Berlin — Heidelberg — New York (1981).Google Scholar
  3. 3.
    B. Venugopal and T. D. Luckey, “Metal Toxicity in Mammals,” Vol.1, 2, Plenum Press, London - New York (1978).Google Scholar
  4. 4.
    L. Friberg, G. F. Nordberg and B. Vouk, eds., “Handbook on the Toxicology of Metals,” Elsevier/North Holland Biomedical Press, Amsterdam - New York - Oxford (1979).Google Scholar
  5. 5.
    A. Vercruysse, ed., “Hazardous Metals in Human Toxicology,” Elsevier, Amsterdam - Oxford - New York - Tokyo (1984).Google Scholar
  6. 6.
    O. Hutzinger, ed., “The Handbook of Environmental Chemistry,” Vol. 1A, Springer, Berlin - Heidelberg - New York (1980).Google Scholar
  7. 7.
    H. W. Nürnberg, Polarography and voltammetry in studies of toxic metals in man and his environment, Sci. Tot. Environm., 12: 151 (1979).CrossRefGoogle Scholar
  8. 8.
    H. W. Nürnberg, Potentialities and applications of voltammetry in ecological chemistry and pollution control of toxic metals, in: “Futuristic Aspects of Electrochemical Science and Technology,” p. 89, SAEST, Karaikudi (1981).Google Scholar
  9. 9.
    H. W. Nürnberg, Voltammetric trace analysis in ecological chemistry of toxic metals, Pure Appl. Chem., 54: 853 (1982).CrossRefGoogle Scholar
  10. 10.
    H. W. Nürnberg, A critical assessment of the voltammetric approach for the study of toxic metals in biological specimens and their ecosystems, in: “Electroanalysis in Hygiene, Environmental, Clinical and Pharmaceutical Chemistry,” W. F. Smyth, ed., p. 351, Elsevier, Amsterdam (1980).Google Scholar
  11. 11.
    P. Valenta, L. Sipos, I. Kramer, P. Krumpen and H. Rützel, An automatic voltammetric analyzer for the simultaneous determination of toxic trace metals in water, Z.Anal.Chem., 312: 101 (1982).CrossRefGoogle Scholar
  12. 12.
    G. C. Barker and A. W. Gardner, Pulse polarography, Z.Anal.Chem., 173: 79 (1960).CrossRefGoogle Scholar
  13. 13.
    E. Parry and R. A. Osteryoung, Evaluation of analytical pulse polarography, Anal.Chem., 37: 1634 (1964).CrossRefGoogle Scholar
  14. 14.
    H. W. Nürnberg, Differentielle pulspolarographie, pulsvoltammetrie und pulsinversvoltammetrie, in: “Analytiker-Taschenbuch,” R. Bock, W. Fresenius, H. Günzler, W. Huber and G. Tölg, eds., Bd.2, S. 211, Springer, Berlin - Heidelberg - New York (1981).Google Scholar
  15. 15.
    H. W. Nürnberg, Trace analytical procedures with modern voltammetric determination methods for the investigation and monitoring of ecotoxic heavy metals in natural waters and atmospheric precipitates, Sci.Tot.Environ., 37: 9 (1984).CrossRefGoogle Scholar
  16. 16.
    V. D. Nguyen, P. Valenta and H. W. Nürnberg, Voltammetry in the analysis of atmospheric pollutants. The determination of toxic trace metals in rain water and snow by differential pulse stripping voltammetry, Sci.Tot.Environm., 12: 35 (1979).CrossRefGoogle Scholar
  17. 17.
    L. Sipos, J. Golimowski, P. Valenta and H. W. Nürnberg, New voltammetric procedure for the simultaneous determination of copper and mercury in environmental samples, Z.Anal.Chem., 298: 1 (1979).Google Scholar
  18. 18.
    L. Sipos, H. W. Nürnberg, P. Valenta and M. Branica, The reliable determination of mercury traces in sea water by subtractiveGoogle Scholar
  19. differential pulse voltammetry at the twin gold electrode, Anal.Chim.Acta, 115: 25 (1980).CrossRefGoogle Scholar
  20. 19.
    F. G. Bodewig, P. Valenta and H. W. Nürnberg, Trace determination of As(III) and As(V) in natural waters by differential pulse anodic stripping voltammetry, Z.Anal.Chem., 311: 187 (1982).CrossRefGoogle Scholar
  21. 20.
    J. Golimowski, P. Valenta and H. W. Nürnberg, Voltammetric ultra trace determination of chromium in natural waters, rain and drinking water, Z.Anal.Chem., in preparation.Google Scholar
  22. 21.
    B. Pihlar, P. Valenta and H. W. Nürnberg, New high-performance analytical procedure for the voltammetric determination of nickel in routine analysis of waters, biological materials and food, Z.Anal.Chem., 307: 337 (1981).CrossRefGoogle Scholar
  23. 22.
    P. Ostapczuk, P. Valenta, M. Stoeppler and H. W. Nürnberg, Voltammetric determination of nickel and cobalt in body fluids and other biological materials, in: “Chemical Toxicology and Clinical Chemistry of Metals,” S. S. Brown and J. Savory, eds., p. 61, Academic Press, London - New York (1983).Google Scholar
  24. 23.
    C. Berg, Direct Determination of Sub-nanomolar Levels of Zinc in Sea Water by Cathodic Stripping Voltammetry, Talanta, in press.Google Scholar
  25. 24.
    L. Mart, Minimization of accuracy risks in voltammetric ultratrace determination of heavy metals in natural waters, Talanta, 29: 1035 (1982).CrossRefGoogle Scholar
  26. 25.
    L. Mart, Seasonal variations of Cd, Pb, Cu and Ni levels in snow from the eastern arctic ocean, Tellus, 35B: 131 (1983).Google Scholar
  27. 26.
    H. W. Nürnberg, P. Valenta, V. D. Nguyen, M. Gödde and E. Urano de Carvalho, Studies on the deposition of acid and of ecotoxic heavy metals with precipitates from the atmosphere, Z.Anal.Chem., 317: 314 (1984).CrossRefGoogle Scholar
  28. 27.
    L. Mart, H. Rützel, P. Klahre, L. Sipos, U. Platzek, P. Valenta and H. W. Nürnberg, Comparative studies on the distribution of heavy metals in the oceans and coastal waters, Sci.Tot.Environm., 26: 1 (1982).CrossRefGoogle Scholar
  29. 28.
    H. W. Nürnberg, L. Mart, H. Rützel and L. Sipos, Investigations on the distribution of heavy metals in the Atlantic and Pacific Oceans, Chem.Geology, 40: 97 (1983).CrossRefGoogle Scholar
  30. 29.
    L. Mart, Prevention of contamination and other accuracy risks in voltammetric trace metal analysis of natural waters. II. Collection of surface water samples, Z.Anal.Chem., 299: 97 (1979).CrossRefGoogle Scholar
  31. 30.
    L. Mart, H. W. Nürnberg and D. Dyrssen, Low level determination of trace metals in arctic sea water and snow by differential pulse voltammetry, in: “Trace Metals in Sea Water,” C. S. Wong, E. Boyle, K. W. Bruland, D. Burton and E. D. Goldberg, eds., p. 113, Plenum Press, New York - London (1983).Google Scholar
  32. 31.
    L. Sipos, H. Rützel and T. H. P. Thijssen, Performance of a new device for sampling sea water from the sea bottom, Thalassia Jugosl., 16: 89 (1980).Google Scholar
  33. 32.
    L. Mart, H. W. Nürnberg and P. Valenta, Prevention of contamination and other accuracy risks in voltammetric trace metal analysis of natural waters. III. Voltammetric ultratrace analysis with a multicell-system designed for clean bench working, Z.Anal.Chem., 300: 350 (1980).CrossRefGoogle Scholar
  34. 33.
    L. Mart, H. W. Nürnberg and D. Dyrssen, Trace metal levels in the eastern Arctic Ocean, Sci.Tot.Environm., 39 (1984), in press.Google Scholar
  35. 34.
    L. Mart, H. W. Nürnberg and H. Rützel, Comparative studies on cadmium levels in the North Sea, Norwegian Sea, Barents Sea and the Eastern Arctic Ocean, Z.Anal.Chem., 317: 201 (1984).CrossRefGoogle Scholar
  36. 35.
    C. S. P. Iyer, P. Valenta and H. W. Nürnberg, A new voltammetric method for the determination of silica traces in water, Anal.Letters, Ser. A, 14: 921 (1981).CrossRefGoogle Scholar
  37. 36.
    K. W. Bruland, Trace elements in sea water, in: Chemical Oceano- graphy,“ Vol.8, Chap. 45, Academic Press, London (1983).Google Scholar
  38. 37.
    K. W. Bruland, Oceanic distributions of Cd, Zn, Ni and Cu in the North Pacific, Earth Planet, Sci.Letters, 47: 176 (1980).Google Scholar
  39. 38.
    W. Dorten, H. W. Nürnberg, L. Mart and P. Valenta, Depth profiles of Cd, Pb and Cu in the Black Sea, Sci.Tot.Environm., in press.Google Scholar
  40. 39.
    L. Mart, H. W. Nürnberg and P. Valenta, Comparative base line studies on Pb-levels in European coastal waters, in: “Lead in the Marine Environment,” M. Branica and Z. Konrad, eds., p. 155, Pergamon Press, Oxford (1980).Google Scholar
  41. 40.
    L. Mart, H. W. Nürnberg and H. Rützel, Trace metal distribution in the German Bight and North Sea coastal waters, Mar.Chem., in press.Google Scholar
  42. 41.
    L. Mart, H. W. Nürnberg, P. Valenta and M. Stoeppler, Determination of levels of toxic trace metals dissolved in sea water and inland water by differential pulse anodic stripping voltammetry, Thalassia Jugosl., 14: 171 (1978).Google Scholar
  43. 42.
    P. Valenta, H. W. Nürnberg, H. Rützel and A. G. A. Merks, Die belastung der ästuare der wester-und oosterschelde mit ökotoxischen metallen, Jahrbuch “Vom Wasser”, 62: 235 (1984).Google Scholar
  44. 43.
    P. Valenta, E. K. Duursma, A. G. A. Merks, H. Rützel and H. W. Nürnberg, Dissolved-particulate behaviour of Cd, Pb and Cu in Netherlands Delta estuaries, Sci.Tot.Environm., in press.Google Scholar
  45. 44.
    P. Valenta, H. W. Nürnberg, P. Klahre, H. Rützel, A. G. A. Merks and S. J. Reddy, A comparative study of toxic trace metals in the estuaries of the Coster and Wester Scheldt and of the Sierra Leone river, Mahasagar, 16: 109 (1983).Google Scholar
  46. 45.
    R. Breder, R. Flucht and H. W. Nürnberg, A comparative study on the toxic trace metal situation in the tyrrhenian estuaries, Thalassia Jugosl., 18:135 (1982).Google Scholar
  47. R. Breder, R. Flucht and H. W. Nürnberg, A comparative study on the toxic trace metal situation in the tyrrhenian estuaries, Thalassia Jugosl., 18:135 (1982).Google Scholar
  48. 46.
    W. Dorten, H. W. Nürnberg, X. Modamio and A. Ballester, Distribution of trace metals and nutrients in the Ebro estuary, Rapp.Comm.Int. Mer.Medit., in press.Google Scholar
  49. 47.
    R. Breder, H. W. Nürnberg, J. Golimowski and M. Stoeppler, Toxic metal levels in the River Rhine, in: “Pollutants and their Ecotoxic Significance,” H. W. Nürnberg and S. Vigneron, eds., J. Wiley, New York (1984).Google Scholar
  50. 48.
    M. Ihnat, A. D. Gordon, J. D. Gaynor, S. S. Berman, A. Desaulniers, M. Stoeppler and P. Valenta, Interlaboratory analysis of natural fresh waters for copper, zinc, cadmium and lead, Intern.J.Environ.Anal. Chem., 8: 259 (1980).Google Scholar
  51. 49.
    L. Sigg, M. Sturm, W. Stumm, L. Mart and H. W. Nürnberg, Schwermetalle im bodensee - mechanismen der konzentrations-regelung, Naturwissenschaften, 69: 546 (1982).CrossRefGoogle Scholar
  52. 50.
    W. Stumm, L. Sigg, H. Sturm and J. Davis, Metal transfer mechanisms in lakes, Thalassia Jugosl., 18: 193 (1982).Google Scholar
  53. 51.
    R. Breder and P. Klahre, Distribution of heavy metals in Lake Zurich, “Proc. 3rd Int. Symp. Interactions Sediments-Water,” Geneva, August 1984, CEP Consultants, Edinburgh (1984).Google Scholar
  54. 52.
    H. W. Nürnberg, Features of voltammetric investigations on trace metal speciation in seawater and inland waters, Thalassia Jugosl., 16: 95 (1980).Google Scholar
  55. 53.
    T. M. Florence and G. E. Batley, Chemical speciation in natural waters, CRC Crit.Rev.Anal.Chem., 9: 219 (1980).CrossRefGoogle Scholar
  56. 54.
    H. W. Nürnberg and P. Valenta, Potentialities and applications of voltammetry in chemical speciations of trace metals in the sea, in: “Trace Metals in Sea Water,” C. S. Wong, E. Boyle, K. W. Bruland, D. Burton and E. D. Goldberg, eds., p. 671, Plenum Press, New York - London (1983).Google Scholar
  57. 55.
    T. M. Florence, The speciation of trace elements in waters, Talanta, 29: 345 (1982).CrossRefGoogle Scholar
  58. 56.
    P. Valenta, Voltammetric studies on trace metal speciation in natural waters. Part I. Methods, p.46; H. W. Nürnberg, Applications and conclusions for chemical oceanography and chemical limnology. Part II, p.211, in: “Trace Elements Speciation in Surface Waters and its Ecological Implications,” G. G. Leppard, ed., Plenum Press, New York - London (1983).Google Scholar
  59. 57.
    H. W. Nürnberg, Investigations on heavy metal speciation in natural waters by voltammetric procedures, Z.Anal.Chem., 316: 557 (1983).CrossRefGoogle Scholar
  60. 58.
    H. W. Nürnberg, Potentialities of voltammetry for the study of physicochemical aspects of heavy metal complexation in natural waters, in: “Complexation of Trace Metals in Natural Waters,” C. J. M. Kramer and J. C. Duinker, eds., M. Nijhoff/W. Junk Publ., The Hague (1984).Google Scholar
  61. 59.
    J. C. Duinker and C. J. M. Kramer, An experimental study on the speciation of dissolved zinc, cadmium, lead and copper in the River Rhine and North Sea water by differential pulse anodic stripping voltammetry, Mar.Chem., 5: 207 (1977).CrossRefGoogle Scholar
  62. 60.
    A. Neubecker and H. E. Allen, The measurement of complexation capacity and conditional stability constants for ligands in natural waters, Water Res., 17: 1 (1983).CrossRefGoogle Scholar
  63. 61.
    M. Branica, D. H. Novak and S. Bubic, Applications of anodic stripping voltammetry to the determination of the state of complexation of traces of metal ions at low concentration levels, Croat.Chem.Acta, 49: 231 (1977).Google Scholar
  64. 62.
    L. Sipos, P. Valenta, H. W. Nürnberg and M. Branica, Voltammetric determination of the stability constants of the predominant labile lead complexes in sea water, in: “Lead in the Marine Environment,” M. Branica and Z. Konrad, eds., p. 61, Pergamon Press, Oxford (1980).Google Scholar
  65. 63.
    B. Raspor, P. Valenta, H. W. Nürnberg and M. Branica, The chelation of cadmium with NTA in sea water as a model for the typical behaviour of trace heavy metal chelates in natural waters, Sci.Tot.Environm., 9: 87 (1978).CrossRefGoogle Scholar
  66. 64.
    B. Raspor, H. W. Nürnberg, P. Valenta and M. Branica, The chelation of Pb by organic ligands in sea water, in: “Lead in the Marine Environment,” M. Branica and Z. Konrad, eds., p. 181, Pergamon Press, Oxford (1980).Google Scholar
  67. 65.
    H. W. Nürnberg and B. Raspor, Applications of voltammetry in studies of the speciation of heavy metals by organic chelators in sea water, Environm.Tech.Letters, 2: 457 (1981).CrossRefGoogle Scholar
  68. 66.
    B. Raspor, H. W. Nürnberg, P. Valenta and M. Branica, Voltammetric studies on the stability of the Zn (II) chelates with NTA and EDTA and the kinetics of their formation in Lake Ontario water, Limnol. Oceanogr., 26: 54 (1981).Google Scholar
  69. 67.
    B. Raspor, H. W. Nürnberg, P. Valenta and M. Branica, Significance of dissolved humic substances for heavy metal speciation in natural waters, in: “Complexation of Trace Metals in Natural Waters,” C. J. M. Kramer and J. C. Duinker, eds., M. Nijhoff/W. Junk Publ., The Hague (1984).Google Scholar
  70. 68.
    M. L. S. Simoes-Goncalves and P. Valenta, Voltammetric and potentiometric investigations on the complexation of Zn (II) by glycine in sea water, J.Electroanal.Chem., 132: 357 (1982).CrossRefGoogle Scholar
  71. 69.
    M. L. S. Simoes-Goncalves, P. Valenta and H. W. Nürnberg, Voltammetric and potentiometric investigations on the complexation of Cd (II) by glycine in seawater, J.Electroanal.Chem., 149: 249 (1983).CrossRefGoogle Scholar
  72. 70.
    M. Sugawara, P. Valenta, H. W. Nürnberg and T. Kambara, Voltammetric study on the speciation of Cd (II) with L-aspartic acid in sea water, J.Electroanal.Chem., 180: 343 (1984).CrossRefGoogle Scholar
  73. 71.
    S. V. Narasimhan and P. Valenta, Determination of the speciation of copper in the presence of morpholine in alkaline solutions by DC and differential pulse polarography, Microchim.Acta, 297 (1983).Google Scholar
  74. 72.
    S. V. Narasimhan, P. Valenta and H. W. Nürnberg, Study on the speciation of copper (I) in the presence of cyclohexylamine in alkaline solution by differential pulse polarography, Microchim.Acta, in press.Google Scholar
  75. 73.
    B. Raspor, P. Valenta, H. W. Nürnberg and M. Branica, Polarographic studies on the kinetics and mechanism of Cd(II)-chelate formation with EDTA in sea water, Thalassia Jugosl., 13: 79 (1977).Google Scholar
  76. 74.
    B. Raspor, H. W. Nürnberg, P. Valenta and M. Branica, Kinetics and mechanism of trace metal chelation in sea water, J.Electroanal. Chem., 115: 293 (1980).Google Scholar
  77. 75.
    A. Voulgaropoulos, P. Valenta and H. W. Nürnberg, Indirect trace determination of NTA in natural waters by differential pulse anodic stripping voltammetry, Z.Anal.Chem., 317: 246 (1984).CrossRefGoogle Scholar
  78. 76.
    H. W. Nürnberg, P. Valenta and V. D. Nguyen, Wet deposition of toxic metals from the atmosphere in the Federal Republic of Germany, in: “Deposition of Atmospheric Pollutants,” H. W. Georgii and J. Pankrath, eds., p. 143, D. Reidel, Dordrecht-Bosten (1982).Google Scholar
  79. 77.
    H. W. Nürnberg, P. Valenta and V. D. Nguyen, The wet deposition of heavy metals from the atmosphere in the Federal Republic of Germany, “Proc. Int. Conf. Heavy Metals in the Environment,” Heidelberg, Sept. 1983, 1: 70, CEP Consultants, Edinburgh (1983).Google Scholar
  80. 78.
    H. W. Nürnberg, P. Valenta and V. D. Nguyen, Schwermetallbelastung der Umwelt im Raum Stolberg durch die Feuchtdeposition, in: “Umweltprobleme durch Schwermetalle im Raum Stolberg 1983,” Ministerium für Arbeit, Gesundheit und Soziales NRW Hrsg., Anh. III, p. 1, Diederichs, Düsseldorf (1983).Google Scholar
  81. 79.
    J. Divisek and L. Fürst, Elektrochemischer Gasanalysator für SO2 in Abgasen, Z.Anal.Chem., 317: 317 (1984).CrossRefGoogle Scholar
  82. 80.
    B. Pihlar, P. Valenta, J. Golimowski and H. W. Nürnberg, Die voltammetrische Bestimmung toxischer Spurenmetalle in kommunalen Abwässern und im Ablauf biologischer Kläranlagen, Z.Wasser Abwasser Forschung, 13: 130 (1980).Google Scholar
  83. 81.
    P. Valenta and H. W. Nürnberg, Moderne voltammetrische verfahren zur analyse und überwachung toxischer metalle und metalloide in wasser und abwasser, Gewässerschutz-Wasser-Abwasser, 44: 105 (1980).Google Scholar
  84. 82.
    W. Dorten, P. Valenta and H. W. Nürnberg, A new photodigestion device to decompose organic matter in water, Z.Anal.Chem., 317: 264 (1984).CrossRefGoogle Scholar
  85. 83.
    P. Klahre, P. Valenta and H. W. Nürnberg, Ein normiertes pulsepolarographisches verfahren zur Prüfung des Trinkwassers auf toxische metalle, Jahrbuch “Vom Wasser”, 51: 199 (1978).Google Scholar
  86. 84.
    P. Valenta, H. Rützel, P. Krumpen, H. W. Salgert and P. Klahre, Device for the automated simultaneous voltammetric on-line determination of toxic trace metals in drinking water, Z.Anal.Chem., 292: 120 (1978).CrossRefGoogle Scholar
  87. 85.
    P. Valenta, P. H. Ostapczuk, B. Pihlar and H. W. Nürnberg, New applications of voltammetry in the determination of toxic trace metals in food, “Proc. Int. Conf. Heavy Metals in the Environment,” Amsterdam, Sept. 1981, p. 619, CEP Consult., Edinburgh (1981).Google Scholar
  88. 86.
    P. Ostapczuk, P. Valenta and H. W. Nürnberg, The voltammetric approach for the assessment of heavy metal traces in food, Z.Lebensm.Unters. Forsch., in press.Google Scholar
  89. 87.
    H. D. Narres, P. Valenta and H. W. Nürnberg, Insversvoltammetrische bestimmung von schwermetallen in fleisch, leber und nieren von schlachtrindern, Z.Anal.Chem., 317: 484 (1984).CrossRefGoogle Scholar
  90. 88.
    M. Stoeppler and H. W. Nürnberg, Typical levels and accumulation of toxic trace metals in muscle tissue and organs of marine organisms from different European Seas, Ecotoxicol.Environ.Safety, 3: 335 (1979).CrossRefGoogle Scholar
  91. 89.
    M. Stoeppler, Analytical aspects of sample collection, sample storage and sample treatment, in: “Trace Element Analytical Chemistry in Medicine and Biology,” P. Brätter and P. Schramel, eds., 2:909, W. de Gruyter, Berlin, New York (1983).Google Scholar
  92. 90.
    M. Stoeppler, Processing biological samples for metal analyses, in: “Chemical Toxicology and Clinical Chemistry of Metals,” S. S. Brown and J. Savory, eds., p. 31, Academic Press, London - New York (1983).Google Scholar
  93. 91.
    M. Stoeppler, M. Bernhard, F. Backhaus and E. Schulte, Mercury in marine organisms from the Western Italian coast, the Strait of Gibraltar and the North Sea, Sci.Tot.Environm., 13: 209 (1979).CrossRefGoogle Scholar
  94. 92.
    R. Ahmed, P. Valenta and H. W. Nürnberg, Voltammetric determination of mercury levels in tuna fish, Microchim.Acta, 171 (1981).Google Scholar
  95. 93.
    M. Stoeppler and K. Brandt, Comparative studies on trace metal levels in marine biota. H. Trace metal in Krill, Krillproducts and fish from the Antarctic Scotia Sea, Z.Lebensm.Unters.Forsch., 169: 95 (1979).CrossRefGoogle Scholar
  96. 94.
    H. D. Narres, P. Valenta and H. W. Nürnberg, Die voltammetrische bestimmung von Schwermetallen in Fleisch und inneren Organen von Schlachtrindern, Z.Lebensm.Unters.Forsch., in press.Google Scholar
  97. 95.
    J. Golimowski, P. Valenta and H. W. Nürnberg, Toxic trace metals in food. I. A new voltammetric procedure for toxic trace metal control of wines, Z.Lebensm.Unters.Forsch., 168: 333 (1979).Google Scholar
  98. 96.
    J. Golimowski, P. Valenta, M. Stoeppler and H. W. Nürnberg, Toxic trace metals in food. II. A comparative study of the levels of toxic trace metals in wine by differential pulse anodic stripping voltammetry and electrothermal, Z.Lebensm.Unters.Forsch., 168: 439 (1979).CrossRefGoogle Scholar
  99. 97.
    J. Golimowski, H. W. Nürnberg and P. Valenta, Die voltammetrische bestimmung toxischer Spurenmetalle in Wein, Lebensmittelchemie u.gerichtl.Chemie., 34: 116 (1980).Google Scholar
  100. 98.
    M. Stoeppler, H. W. Dürbeck and H. W. Nürnberg, Environmental specimen banking: a challenge in trace analysis, Talanta, 29: 963 (1982).CrossRefGoogle Scholar
  101. 99.
    P. Ostapczuk, M. Gödde, M. Stoeppler and H. W. Nürnberg, Kontrollund routinebestimmung von Zn, Ni und Co mit differentieller pulsvoltam-metrie in materialien der Deutschen Umweltprobenbank, Z.Anal.Chem., 317: 226 (1984).CrossRefGoogle Scholar
  102. 100.
    M. Stoeppler, Bedeutung von Umweltprobenbanken - anorganisch-analytische Aufgabenstellungen und erste Ergebnisse des Deutschen Umweltprobenbankprogramms, Z.Anal.Chem., 317: 228 (1984).CrossRefGoogle Scholar
  103. 101.
    M. Stoeppler, F. Backhaus, J. D. Schladot and H. W. Nürnberg, Concept and operational experiences of the pilot environmental Specimen Bank Project in the Federal Republic of Germany, in: “Environmental Specimen Banking and Monitoring as Related to Banking,” R. A. Lewis, N. Stein and C. W. Lewis, eds., p. 95, Martinus Nijhoff Publishers, The Hague - Boston - London (1984).Google Scholar
  104. 102.
    H. W. Nürnberg, Realization of specimen banking. Summary and conclusions, in: “Environmental Specimen Banking and Monitoring as Related to Banking,” R. A. Lewis, N. Stein and C. W. Lewis, eds., p. 23, Martinus Nijhoff Publishers, The Hague - Boston - London (1984).Google Scholar
  105. 103.
    P. Valenta, H. Rüzel, H. W. Nürnberg and M. Stoeppler, Trace chemistry of toxic metals in biomatrices. II. Voltammetric determination of the trace content of Cadmium and other toxic metals in human whole blood, Z.Anal.Chem., 285: 25 (1977).CrossRefGoogle Scholar
  106. 104.
    H. W. Nürnberg, Potentialities and applications of voltammetry in the analysis of toxic trace metals in body fluids, in: “Analytical Techniques for Heavy Metals in Biological Fluids,” S. Facchetti, ed., p. 209, Elsevier, Amsterdam (1983).Google Scholar
  107. 105.
    J. Golimowski, P. Valenta, M. Stoeppler and H. W. Nürnberg, A rapid high-performance analytical procedure with simultaneous voltammetric determination of toxic trace metals in urine, Talanta, 26: 649 (1979).CrossRefGoogle Scholar
  108. 106.
    M. Stoeppler, P. Valenta and H. W. Nürnberg, Application of independent methods and standard materials: an effective approach to reliable trace and ultratrace analysis of metals and metalloids in environmental and biological matrices, Z.Anal.Chem., 297: 22 (1979).Google Scholar
  109. M. Stoeppler, P. Valenta and H. W. Nürnberg, Application of independent methods and standard materials: an effective approach to reliable reliable trace and ultratrace analysis of metals and metalloids in environmental and biological matrices, Z.Anal.Chem., 297: 22 (1979).Google Scholar
  110. 107.
    M. Stoeppler, C. Mohl, P. Ostapczuk, M. Gödde, M. Roth and E. Waidmann, Rapid and reliable determination of elevated blood lead levels, Z.Anal.Chem., 317: 486 (1984).CrossRefGoogle Scholar
  111. 108.
    P. Ostapczuk, M. Froning, M. Stoeppler and H. W. Nürnberg, Square wave voltammetry: a new approach for the sensitive determination of Nickel and Cobalt in human samples, in: “Proc. 3rd Int. Conf. Nickel Metabolism and Toxicology,” Paris, Sept. 1984, Blackwells, Oxford, in press.Google Scholar
  112. 109.
    H. F. Hildebrand, B. Raumazeille, J. Decouix, M. C. Herlant-Peers, P. Ostapczuk and M. Stoeppler, Biological consequences of longterm exposure to orthopedic implants, in: “Proc. 3rd Int. Conf. Nickel Metabolism and Toxicology,” Paris, Sept. 1984, Blackwells, Oxford, in press.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • H. W. Nürnberg
    • 1
  1. 1.Institute of Applied Physical ChemistryNuclear Research Center (KFA)JulichWest Germany

Personalised recommendations