Advertisement

Analysis and Removal of Pollutants

  • R. Kalvoda

Abstract

One of the most pressing tasks for mankind during the scientific and technical revolution, in addition to efforts to preserve peace, is the protection of the environment and creation of conditions for modification of the environment in an ecologically optimal way for the further development of our life on this planet.

Keywords

Environmental Analysis Magnesium Hydroxide Surface Active Compound Polycyclic Hydrocarbon Differential Pulse Polarography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. O.’ M. Bockris, ed., “Electrochemistry of Cleaner Environments,” Plenum Press, New York (1971).Google Scholar
  2. 2.
    R. A. Bailey, H. M. Clark, J. P. Ferris, S. Krause, and R. L. Strong, “Chemistry of the Environment,” Academic Press, New York (1978).Google Scholar
  3. 3.
    R. Kalvoda, ed., “Electroanalytical Methods in Chemical and Environmental Analysis,” Plenum Press, London (1985).Google Scholar
  4. 4.
    L. Šerâk, Measurement of oxygen in biological systems, in: “Electroanalytical Methods in Chemical and Environmental Analysis,” R. Kalvoda, ed., Plenum Press, London (1985).Google Scholar
  5. 5.
    P. Hofman, Electrochemical analyzers of water toxicity, in: “Electroanalytical Methods in Chemical and Environmental Analysis,” R. Kalvoda, ed., Plenum Press, London (1985).Google Scholar
  6. 6.
    M. Mascini and A. Liberti, Ion selective electrodes for measurement in fresh waters, Sci.Total Environ., in print.Google Scholar
  7. 7.
    J. Heyrovsky and J. Kdta, “Principles of Polarography,” Academic Press, London and New York (1965).Google Scholar
  8. 8.
    T. Zvonaric, V. Zutie, and M. Branica, Determination of surfactant activity of sea water samples by polarography, Thalassia Jugoslavica, 9: 65 (1973).Google Scholar
  9. 9.
    Z. Kozaraé, B. Cosovic, and M. Branica, Estimation of surfactant activity of polluted seawater by Kalousek Commutator Technique, J.Electroanal.Chem., 68: 75 (1976).Google Scholar
  10. 10.
    Z. Kozaraé, V. 2utie, and B. Cosovie, Direct determination of nonionicGoogle Scholar
  11. and anionic detergents in effluents, Tenside Detergents, 13: 260 (1976).Google Scholar
  12. 11.
    P. Holmquist, On oscillographic polarography of non-ionic tensides, J.Electroanal.Chem., 39: 470 (1972).Google Scholar
  13. 12.
    L. Novotnÿ and I. Smoler, The method of interrupted convection for measurements of adsorption equilibrium, J.Electroanal.Chem., 146: 183 (1983).Google Scholar
  14. 13.
    R. Kalvoda, Polarographic adsorptive analysis and tensammetry of adsorbable molecules, Pure and Applied Chem., in print.Google Scholar
  15. 14.
    P. Nangniot, “La Polarographie en Agronomie et en Biologie,” J. Duculot, Gembloux (1970).Google Scholar
  16. 15.
    J. Volke and M. Slamnik, Polarography and related methods, in: “Pesticide Analysis,” G. Dask, ed., Dekker, New York - Basle (1981).Google Scholar
  17. 16.
    W. F. Smyth, “Electroanalysis in Hygiene, Environmental, Clinical and Pharmaceutical Chemistry,” Elsevier, Amsterdam (1980).Google Scholar
  18. 17.
    R. Kalvoda, Polarographic and voltammetric methods, in: “Electroanalytical Methods in Chemical and Environmental Analysis,” R. Kalvoda, ed., Plenum Press, London (1985).Google Scholar
  19. 18.
    M. Brezina and P. Zuman, “Polarography in Medicine, Biochemistry and Pharmacy,” Interscience Publ., New York (1958).Google Scholar
  20. 19.
    Anon., “Bibliography of Polarographic Literature 1922–1967,” Sargent-Welch Scientific Co., Skokie, USA (1969).Google Scholar
  21. 20.
    L. Meites and P. Zuman, “CRC Handbook Series in Organic Electrochemistry,” CRC Press Inc., Boca Raton (1977–1984).Google Scholar
  22. 21.
    J. Tenygl, Electrochemical detectors and monitors, in: “Electroanalytical Methods in Chemical and Environmental Analysis,” R. Kalvoda, ed., Plenum Press, London (1985).Google Scholar
  23. 22.
    J. Fexa, Semiconductor sensors, in: “Electroanalytical Methods in Chemical and Environmental Analysis,” R. Kalvoda, ed., Plenum Press, London (1985).Google Scholar
  24. 23.
    M. D. Manita, R. M. Salikhzhdanova, and C. F. Javorskaya, “Sovremennyie Metody Opredeleniya Atmosfernych Zagryaznenii Naselenykh Mest,” Medicina, Moscow (1980).Google Scholar
  25. 24.
    C. J. Purnell and C. J. Warwick, Application of electrochemical detection in high-performance liquid chromatography to the measurement of toxic substances in air, Anal.Proc., p.151, April (1981).Google Scholar
  26. 25.
    M. R. Smyth and J. Osteryoung, Electroanalysis of environmental carcinogens, in: “Electroanalysis in Hygiene, Environmental, Clinical and Pharmaceutical Chemistry,” W. F. Smith, ed., Elsevier, Amsterdam (1980).Google Scholar
  27. 26.
    R. Samuelson and T. Rydström, Pulse polarographic studies on N-Nitrosamines, in: “Electroanalysis in Hygiene, Environmental, Clinical and Pharmaceutical Chemistry,” W. F. Smith, ed., Elsevier, Amsterdam (1980).Google Scholar
  28. 27.
    Third Annual Report on Carcinogen,” U.S. Department of Health and Human Services (1983).Google Scholar
  29. 28.
    W. F. Smyth, L. Gold, D. Dadgar, M. R. Jan, and M. R. Smyth, Polarographic and voltammetric methods of environmental analysis, Inter.Lab., 13: 40, (1983).Google Scholar
  30. 29.
    J. M. Séquaris, P. Valenta, and H. W. Nürnberg, Rapid differential pulse voltammetric determination of 7-methylguanine, J.Electroanal. Chem., 122: 263 (1981).Google Scholar
  31. 30.
    E. Palecek, Polarographic analysis of nucleic acids, in: “Electroanalysis in Hygiene, Environmental, Clinical and Pharmaceutical Chemistry,” W. F. Smyth, ed., Elsevier, Amsterdam (1980).Google Scholar
  32. 31.
    I. Karube, T. Matsunaga, T. Nakahara and S. Suzuki, Preliminary screening of mutagens with a microbial sensor, Anal.Chem., 53: 1024 (1981).Google Scholar
  33. 32.
    Final Report, UNESCO, Regional Workshop, Electrochemical Removal of Environmental Pollutants, Padova (1980), edited by UNESCO, Paris (1981).Google Scholar
  34. 33.
    P. M. Robertson and N. Ibl, Electrochemical removal of environmental pollutants, in: (32).Google Scholar
  35. 34.
    S. Gupta, B. Fleet, and I. F. Kennedy, Electrochemical reactors for environmental pollution control, in: “Electroanalysis in Hygiene, Environmental, Clinical and Pharmaceutical Chemistry,” W. F. Smyth, ed., Elsevier, Amsterdam (1980).Google Scholar
  36. 35.
    W. Faul and B. Kastening, Elektrochemische leiterplattenätzung mit geschlossenen elektrolyt kreislauf, Technische Information, No.5, Kernforschungsanlage, Jülich.Google Scholar
  37. 36.
    W. Faul and B. Kastening, Katalytische abwasser-und abgasentgiftung, Technische Information, No.14, Kernforschungsanlage, Jülich.Google Scholar
  38. 37.
    W. Faul and B. Kastening, Katalytische metall-rückgewinnung aus wässrigen lösungen, Technische Information, No.17, Kernforschungsanlage, Jülich.Google Scholar
  39. 38.
    A. T. Kuhn, The electrochemical treatment of aqueous effluent streams, in: “Electrochemistry of Cleaner Environments,” J. O. M. Bockris, ed., Plenum Press, New York (1972).Google Scholar
  40. 39.
    L. Marini and F. B. Leitz, Electrooxidation of ammonia in waste water, J.Appl.Electrochem., 8: 33 (1978).Google Scholar
  41. 40.
    H. Maget, SO2 abatement, Environ.Sci.Technol., 11: 225 (1977).Google Scholar
  42. 41.
    L. Mendia and F. Gigliani, Electrochemical possibilities of treatment of liquid effluents: the case of municipal waste waters, in: (32).Google Scholar
  43. 42.
    L. Mendia and E. Buonincontro, Un particulare trattamento delle acque di rifinto cittadine, Acqua industr., 7: 8 (1960).Google Scholar
  44. 43.
    H. W. Marson, “Electrolytic Sewage Treatment: The Modern Process,” The Institute of Sewage Purification, Annual Conference, Brighton 21–24 June 1966, Conference Paper No.6.Google Scholar
  45. 44.
    K. H. Hartkorn, Elektro-M verfahren zur phosphat entferung aus wässern, Städtehygiene, 9: 21 (1973).Google Scholar
  46. 45.
    J. O.’ M. Bockris, The electrochemical future, in: “Electrochemistry of Cleaner Environments,” J. O.’ M. Bockris, ed., Plenum Press, New York (1972).CrossRefGoogle Scholar
  47. 46.
    B. Matov, “Elektroflotacija,” Izd.Kartya Moldovenjaske, Kishinev (1971).Google Scholar
  48. 47.
    M. G. Granovskij, I. S. Lavrov, and O. Smirnov, “Elektroobrabotka Zidkostej,” Izd.Chimija., Leningrad (1974).Google Scholar
  49. 48.
    H. Binder, Electrochemical, electroflocculation and similar methods in sewage-treatment, in: (32).Google Scholar
  50. 49.
    C. P. C. Poon and T. G. Bruckner, Physicochemical treatment of wastewater/seawater mixture by electrolysis, J.Water Poll.Control.Fed., 47: 1 (1975).Google Scholar
  51. 50.
    E. Fischerovâ, Electrochemical treatment of biological wastes (in Czech.), in: “Elektrochemie a LivotnI Prostredí,” J. Balej, ed., Academia, Praha (1982).Google Scholar
  52. 51.
    S. Lim and J. Winnik, Electrochemical removal and concentration of hydrogen sulfide from coal gas, J.Electrochem.Soc., 131: 562 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. Kalvoda
    • 1
  1. 1.The J. Heyrovský Institute of Physical Chemistry and ElectrochemistryCzechoslovak Academy of SciencesPragueCzech Republic

Personalised recommendations