Adhesive Molecules and their Role During the Ontogeny of the Peripheral Nervous System

  • Jean-Loup Duband
  • Jean-Paul Thiery
Part of the NATO ASI Series book series (NSSA, volume 99)


The body plan that arises at the end of early embryonic morphogenesis is mainly the result of temporally and locally coordinated events, that is proliferation, adhesion, migration, differentiation and death of cells. The behavior of each cell depends largely on its degree of interaction with its neighbours and with extracellular environment. These interactions involve the cytoskeleton, the plasma membrane, and the extracellular matrix (ECM). Interestingly, all of these components are intimately linked through specific molecules and constitute a continuous framework within which changes in any one component rapidly lead to consistent changes in the other components and, as a consequence, a consistent cell behavior (see Garrod, Pitts, Gilula, Reggio and Franke, this volume; see also Fig. 1).


Hyaluronic Acid Neural Tube Neural Crest Peripheral Nervous System Chick Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie M., 1970, Contact inhibition in tissue culture, In vitro, 6: 128–142.PubMedCrossRefGoogle Scholar
  2. Akiyama S.K. and Yamada K. M., 1984, The interaction of plasma fibronectin with fibroblastic cells in suspension, J. Biol. Chem., in press.Google Scholar
  3. Aplin J.D., Hughes R.C., Jaffe C.L. and Sharon N., 1981, Reversible cross-linking of cellular components of adherent fibroblasts to fibronectin and lectin-coated substrata, Exp. Cell Res., 134: 488–494.CrossRefGoogle Scholar
  4. Brackenbury R., Thiery J.P., Rutishauser U. and Edelman G.M., 1977, Adhesion among neural cells of the chick embryo. 1. An immunological assay for molecules involved in cell-cell binding, J. Biol. Chem., 252: 6835–6840.PubMedGoogle Scholar
  5. Boucaut J.C., Darribere T., Poole R.J., Aoyama H., Yamada K.M. and Thiery J.P., 1984 b, Biologically active synthetic peptides as probes of embryonic development: a competitive inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos, J. Cell Biol., 99: 1822–1830.Google Scholar
  6. Bronner-Fraser M., 1982, Distribution of latex beads and retinal pigment epithelial cells along the ventral neural crest pathway, Dev. Biol., 91: 50–63.PubMedCrossRefGoogle Scholar
  7. Bronner-Fraser M., 1984, Latex beads as probe of a neural crest pathway. Effects of laminin, collagen and cell surface charge on bead translocation, J. Cell Biol., 98: 1947–1960.PubMedCrossRefGoogle Scholar
  8. Buskirk D.R., Thiery J.P., Rutishauser U. and Edelman G.M., 1980, Antibodies to a neural cell adhesion molecule disrupt histogenesis in cultured chick neural retinae, Nature, 285: 488–489.PubMedCrossRefGoogle Scholar
  9. Carter S.B., 1967, Haptotaxis and the mechanics of cell motility, Nature, 213: 256–260.PubMedCrossRefGoogle Scholar
  10. Chen W.T., Olden K., Bernard B.A. and Chu F.F., 1984, Expression of transformation-associated protease(s) that degrade fibronectin at cell contact sites, J. Cell Biol., 98: 1546–1555.PubMedCrossRefGoogle Scholar
  11. Chuong C.M. and Edelman G.M., 1984, Alterations in neural cell adhesion molecules during development of different regions of the nervous system, J. Neurosci., 4: 2354–2368.PubMedGoogle Scholar
  12. Cochard P. and Coltey P., 1983, Cholinergic traits in the neural crest: acetylcholinesterase in crest cells of the chick embryo, Dev. Biol., 98: 221–238.PubMedCrossRefGoogle Scholar
  13. Couchman J.R., Rees D.A., Green M.R. and Smith C.G., 1982, Fibronectin has a dual role in locomotion and anchorage of primary chick fibroblasts and can promote entry into the division cycle, J. Cell Biol., 93: 402–410.PubMedCrossRefGoogle Scholar
  14. Cunningham B.A., Hoffman S., Rutishauser U., Hemperly J.J. and Edelman G.M., 1983, Molecular topography of the neural cell adhesion molecule N-CAM: Surface orientation and location of sialic acid-rich and binding regions, Proc. Natl. Acad. Sci. USA, 80: 3116–3120.PubMedCrossRefGoogle Scholar
  15. D’Amico-Martel A. and Noden D.M., 1983, Contribution of placodal and neural crest cells to avian cranial peripheral ganglia, Am. J. Anat., 166: 445–468.PubMedCrossRefGoogle Scholar
  16. Damsky C.H., Richa J., Solter D., Knudsen K. and Buck C.A., 1983, Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue, Cell, 34: 455–466.PubMedCrossRefGoogle Scholar
  17. Derby M.A., 1978, Analysis of glycosaminoglycans within the extracellular enviroments encountered by migrating neural crest cells, Dev. Biol., 66: 321–336.PubMedCrossRefGoogle Scholar
  18. Di Virgilio G., Lavenda N. and Worden J.L., 1982, Sequence of events in neural tube closure and the formation of the neural crest in the chick embryo, Acta Anat., 68: 127–146.CrossRefGoogle Scholar
  19. Donaldson D.J. and Nahan J.T., 1984, Epidermal cell migration on laminin-coated substrates. Comparison with other extracellular matrix and non-matrix proteins, Cell Tiss. Res., 235: 221–224.Google Scholar
  20. Duband J.L. and Thiery J.P., 1982, Distribution of fibronectin in the early phase of avian cephalic neural crest cell migration. Develop. Biol., 93: 308–323.PubMedCrossRefGoogle Scholar
  21. Duband J.L., Timpl R. and Thiery J.P., 1984 a, Laminin in the early chick embryo: Correlation with epithelium-mesenchyme interconversion, Dev. Biol., submitted.Google Scholar
  22. Duband J.L., Grimaud J.A. and Thiery J.P., 1984 b, Collagens at the time of crest cell migration, Cell Diff., submitted.Google Scholar
  23. Duband J.L., Tucker G.C., Poole T.J., Vincent M., Aoyama H. and Thiery J.P., 1984 c, How do the migratory and adhesive properties of the neural crest govern ganglia formation in the avian peripheral nervous system ?, J, Cellular Biochem., in press.Google Scholar
  24. Edelman G.M., 1983, Cell adhesion molecules, Science, 219: 450–457.PubMedCrossRefGoogle Scholar
  25. Edelman G.M., 1984, Cell adhesion and the molecular processes of morphogenesis, Ann. Rev. Biochem., in press.Google Scholar
  26. Edelman G.M., Gallin W., Delouvee A., Cunningham B.A. and Thiery J.P., 1983, Early epochal maps of two different cell adhesion molecules, Proc. Natl. Acad. Sci. USA, 80: 4384–4388.PubMedCrossRefGoogle Scholar
  27. Edgar D., Timpl R. and Thoenen H., 1984, The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival, EMBO J., 3: 1463–1468.PubMedGoogle Scholar
  28. Erickson C.A., Tosney K.W. and Weston J.A., 1980, Analysis of migratory behavior of neural crest and fibroblastic cells in embryonic tissues, Develop. Biol., 77: 142–156.PubMedCrossRefGoogle Scholar
  29. Erickson C.A. and Weston J.A., 1983, An SEM analysis of neural crest migration in the mouse, J. Embryol. exp. Morph., 74: 97–118.PubMedGoogle Scholar
  30. Fisher M. and Solursh M., 1979, The influence of the substratum on the mesenchyme spreading in vitro, Exp. Cell Res., 123: 1–14.PubMedCrossRefGoogle Scholar
  31. Fraser S.E., Murray B.A., Chuong C.M. and Edelman G.M., 1984, Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules, Proc. Natl. Acad. Sci. USA, 81: 4222–4226.PubMedCrossRefGoogle Scholar
  32. Furcht L.T., 1983, Structure and function of the adhesive glycoprotein fibronectin, In: “Modern Cell Biology”, vol. 1, pp 53–117.Google Scholar
  33. Furcht L.T., Smith D., Wendelschafer-Crabb G., Woodbridge P.A. and Foidart J.M., 1980, Fibronectin presence in native collagen fibrils of human fibroblasts: immunoperoxidase and the immunoferritin localization, J. Histochem. Cytochem., 28: 1319–1333.PubMedCrossRefGoogle Scholar
  34. Gallin W.J., Edelman G.M. and Cunningham B.A., 1983, Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells, Proc. Natl. Acad. Sci. USA, 80: 1038–1042.PubMedCrossRefGoogle Scholar
  35. Goridis C., De Agostini-Bazin H., Hirn M., Hirsch M.R., Rougon G., Sadoul R., Langley O.K., Gombos G. and Finne J., 1984, Neural surface antigens during nervous system development, In:“ Cold Spring Harbor Symposia on Quantitative Biology”, vol. 48, pp 527–537.Google Scholar
  36. Greenberg J.H. and Pratt R.M., 1977, Glycosaminoglycan and glycoprotein synthesis by cranial neural crest cells in vitro, Cell Diff., 6: 119–132.CrossRefGoogle Scholar
  37. Greenberg J.H., Seppa H., Seppa S. and Tyl Hewitt A., 1981, Role of collagen and fibronectin in neural crest cell adhesion and migration, Develop. Biol., 87: 259–266.PubMedCrossRefGoogle Scholar
  38. Grumet M. and Edelman G.M., 1984, Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule, J, Cell Biol., 98: 1746–1756.PubMedCrossRefGoogle Scholar
  39. Grumet M., Hoffman S. and Edelman G.M., 1984, Two antigenically related neuronal cell adhesion molecules of different specificities mediate neuron-neuron and neuron-glia adhesion, Proc. Natl. Acad. Sci. USA, 81: 267–271.PubMedCrossRefGoogle Scholar
  40. Hay E.D., 1973, Origin and role of collagen in the embryo, Amer. Zool., 13: 1085–1107.Google Scholar
  41. Hay E.D.J 1981, Cell biology of extracellular matrix, Plenum Press, New York.Google Scholar
  42. Hewit A.T., Kleinman H.K., Pennyparker J.P. and Martin G.R., 1980, Identification of an adhesion factor for chondrocytes, Proc. Natl. Acad. Sci. USA, 77: 385–388.CrossRefGoogle Scholar
  43. Hoffman S., Sorkin B.C., White P.C., Brackenbury R., Mailhammer R., Rutishauser U., Cunningham B.A. and Edelman G.M., 1982, Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes, J. Biol. Chem., 257: 7720–7729.PubMedGoogle Scholar
  44. Hoffman S. and Edelman G.M., 1983, Kinetics of homophilic binding by embryonic and adult forms of the neural forms of the neural cell adhesion molecule, Proc. Natl. Acad. Sci. USA, 80: 5762–5766.PubMedCrossRefGoogle Scholar
  45. Huesgen A. and Gerish G., 1975, FEBS lett., 56: 46–49.PubMedCrossRefGoogle Scholar
  46. Hyafil F., Babinet C. and Jacob F., 1981, Cell-cell interactions in early embryogenesis: a molecular approach to the role of calcium, Cell, 26: 447–454.PubMedCrossRefGoogle Scholar
  47. Hynes R.O. and Yamada K.M., 1982, Fibronectins: multifunctional modular glycoproteins, J. Cell Biol., 95: 369–377.PubMedCrossRefGoogle Scholar
  48. Jacobson A.G., 1981, Morphogenesis of the neural plate and tube. In: “Morphogenesis and pattern formation”, T.G. Connelly, ed., Raven Press, New York, pp 233–263.Google Scholar
  49. Karfunkel P., 1974, The mechanism of neural tube formation, Intern. Rev. Cytol., 38: 245–271.CrossRefGoogle Scholar
  50. Jorgensen O., Delouvee A., Thiery J.P. and Edelman G.M., 1980, The nervous system specific protein D2 is involved in adhesion among neurites from cultured rat ganglia, FEBS Lett., 111: 39–42.PubMedCrossRefGoogle Scholar
  51. Kornblihtt A.R., Vibe-Petersen K. and Baralle F.E., 1984, Human fibronectin: molecular cloning evidence for two mRNA species differing by an internal segment coding for a structural domain, EMBO J., 3: 221–226.PubMedGoogle Scholar
  52. Kornblihtt A.R., Vibe-Petersen K. and Baralle F.E., 1984, Human fibronectin: cell specific alternative mRNA splicing generates polypeptide chains differing in the number of internal repeats, Nucleic Acid Res., in press.Google Scholar
  53. Lattera J., Ansbacher R. and Culp L.A., 1980, Glycosaminoglycans that bind cold-insoluble globulin in cell-substratum adhesion sites of murine fibroblasts, Proc. Natl. Acad. Sci. USA, 77: 6662–6666.CrossRefGoogle Scholar
  54. Le Douarin N.M., 1973, A biological cell labelling technique and its use in experimental embryology, Dev. Biol., 30: 217–232.PubMedCrossRefGoogle Scholar
  55. Le Douarin N.M., 1982, The Neural Crest, Cambridge University Press, Cambridge.Google Scholar
  56. Le Douarin N.M. and Teillet M.A., 1974, Experimental analysis of the migration and differentiation of neuroblast of the autonomic nervous system and of neurectodermal mesenchymal derivatives using a biological cell marking technique, Dev. Biol., 41: 162–184.Google Scholar
  57. Le Douarin N.M., Cochard P., Vincent M., Duband J.L., Tucker G.C. Teillet M.A. and Thiery J.P., 1984 a, Nuclear cytoplasmic and membrane markers to follow neural crest cell migration. A comparative study. In: “The role of extracellular matrix in development”, R.L. Treslstad, Alan R. Liss, New York, pp 373–398.Google Scholar
  58. Le Douarin N.M., Teillet M.A. and Fontaine-Perus J., 1984 b, Chimaeras in the study of the peripheral nervous system. In: “Chimaeras in Developmental biology”, N. Le Douarin and A. McLaren, Academic Press Inc., London, pp. 313–352.Google Scholar
  59. Lesot H., Kühl U. and Von der Mark K., 1983, Isolation of a laminin binding protein from muscle cell membranes, EMBO J., 2: 861–865.PubMedGoogle Scholar
  60. Liesi P., Dahl D. and Vaheri A., 1983, Laminin is produced by early rat astrocytes in primary rat culture., J. Cell Biol., 96: 920–924.PubMedCrossRefGoogle Scholar
  61. Liesi P., Kaakkola S., Dahl D. and Vaheri A., 1984, Laminin is induced in astrocytes of adult brain by injury, EMBO J., 3: 683–686.PubMedGoogle Scholar
  62. Lindner L., Rathjen F.G. and Schachner M., 1983, L1 mono and polyclonal antibodies modified cell migration in early post natal mouse cerebellum, Nature, 305: 427–430.PubMedCrossRefGoogle Scholar
  63. Löfberg J., Ahlfors K., Fällstrom C., 1980, Neural crest cell migration in relation to extracellular matrix organization in the embryonic axolotl trunk, Dev. Biol., 75: 148–167.Google Scholar
  64. Löhler J., Timpl R. and Jaenish R., 1984, Lethal mutation of mouse collagen. I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchymal cell death at day 12 of gestation, Cell, 38: 597–607.PubMedCrossRefGoogle Scholar
  65. Mayer B.W., Hay E.D. and Hynes R.O., 1981, Immunocytochemical localization of fibronectin in embryonic chick trunk and area vasculosa, Dev. Biol., 82: 267–286.Google Scholar
  66. Newgreen D.F., Ritterman M. and Peters E.A., 1979, Morphology and behaviour of neural crest cells of chick embryo in vitro, Cell Tissue Res., 203: 115–140.PubMedCrossRefGoogle Scholar
  67. Newgreen D.F. and Gibbins I.L., 1982, Factors controlling the time of onset of the migration of neural crest cells in the fowl embryo, Cell Tissue Res., 224: 145–160.PubMedCrossRefGoogle Scholar
  68. Newgreen D.F. and Thiery J.P., 1980, Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells, Cell Tissue Res., 211: 269–291.PubMedCrossRefGoogle Scholar
  69. Newgreen D.F., Gibbins I.L., Sauter J., Wallenfels B. and Wiiltz, 1982, Ultrastructural and tissue culture studies on the role of fibronectin, collagen and glycosaminoglycans in the migration of neural crest cells in the fowl embryo, Cell Tissue Res., 221: 521–549.PubMedCrossRefGoogle Scholar
  70. Nichols D.M., 1981, Neural crest formation in the head of the mouse embryo as observed using a new histological technigue, J. Embryol. exp. Morph., 64: 105–120.PubMedGoogle Scholar
  71. Noden D.M., 1975, An analysis of the migratory behaviour of avian cephalic neural crest cells, Dev. Biol., 42: 106–130.Google Scholar
  72. Noden D.M., 1978, The control of avian cephalic crest cell cytodifferentiation, Dev. Biol., 67: 296–329.Google Scholar
  73. Ott U., Odermatt E., Engel J., Furthmayer H. and Timpl R., 1982, Protease resistance and conformation of laminin, Eur. J. Biochem., 123: 63–72.PubMedCrossRefGoogle Scholar
  74. Petersen T.E., Thogersen H.C., Skortengaard K., Vibe-Pedersen K., Sahl P., Sottrup-Jensen L. and Magnusson S., 1983, Partial primary structure of bovine plasma fibronectin: three types of internal homology, Proc. Natl. Acad. Sci. USA, 80: 137–141.PubMedCrossRefGoogle Scholar
  75. Perkins M.E., Ji T.H. and Hynes R.O., 1979, Cross-linking of fibronectin to sulfated proteoglycans at the cell surface, Cell, 16: 941–952.PubMedCrossRefGoogle Scholar
  76. Pierschbacher M.D. and Ruoslahti E., 1984, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature, 309: 30–33.PubMedCrossRefGoogle Scholar
  77. Pintar J.E., 1978, Distribution and synthesis of glycosaminoglycans during quail neural crest morphogenesis, Dev. Biol., 67: 444–464.Google Scholar
  78. Poole A.R., Pidoux I., Reiner A., Choi H. and Rosenberg L.C., 1984, Association of an extracellular protein (chondrocalcin) with the calcification of cartilage in endochondral bone formation, J. Cell Biol., 98: 54–65.PubMedCrossRefGoogle Scholar
  79. Pratt R.M., Larsen M.A., Johnston M.C., 1975, Migration of cranial neural crest cells in a cell-free hyaluronic rich matrix, Dev. Biol., 44: 298–305.Google Scholar
  80. Rao N.C.J Margulies I.M.L., Goldfarb R.H., Madri J.A., Woodley D.T. and Liotta L.A., 1982, Differential proteolytic susceptibility of laminin alpha and beta subunits, Arch. Biochem. Biophys., 219: 65–70.PubMedCrossRefGoogle Scholar
  81. Rao L.A., Barsky S.H., Terranova V.P. and Liotta L.A., 1983, Isolation of a tumor cell laminin receptor, Biochem. Biophys. Res. Commun., 111: 804–808.CrossRefGoogle Scholar
  82. Revel J.P. and Brown S.S., 1975, Cell junctions in development with particular reference to the neural tube. Cold Spring Harbor Symp. Q. Biol., 40: 443–455. 115Google Scholar
  83. Rogers S.L., Letrourneau P.C., Palm S.L., McCarthy J. and Furcht L.T., 1983, Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin, Dev. Biol., 98: 212–220.Google Scholar
  84. Rothbard J.B., Brackenbury R.B., Cunningham B.A. and Edelman G.M., 1982, Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains, J. Biol. Chem., 257: 11064–11069.PubMedGoogle Scholar
  85. Rothman T., Gershon M.D. and Holtzer M., 1978, The relationship of cell division to the acquisition of adrenergic characteristics by developing sympathetic ganglion cell precursors, Dev. Biol., 65: 322–341.Google Scholar
  86. Rovasio R.A, Delouvée A., Yamada K.M., Timpl R. and Thiery J.P., 1983, Neural crest cell migration: Requirement for exogenous fibronectin and high cell density, J. Cell Biol., 96: 462–473.PubMedCrossRefGoogle Scholar
  87. Rubin K., Hôôk M., Obrink B. and Timpl R., 1981, Substrate adhesion of rat hepatocytes: mechanisms of attachment to collagen substrates, Cell, 24: 463–470.PubMedCrossRefGoogle Scholar
  88. Ruoslahti E. and Vaheri A., 1975, Interaction of soluble fibroblast antigen with fibrinogen and fibrin. Identify with cold insoluble globulin of human plasma, J. exp. Med., 141: 497–501.PubMedCrossRefGoogle Scholar
  89. Rutishauser U. and Edelman G.M., 1980, Effects of fasciculation on the outgrowth of neurites from spinal ganglia in culture, J. cell Biol., 87: 370–378.PubMedCrossRefGoogle Scholar
  90. Rutishauser U., Gall W.E. and Edelman G.M., 1978, Adhesion among neural cells of the chick embryo IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia, J. Cell Biol., 79: 382–393.PubMedCrossRefGoogle Scholar
  91. Schwarzbauer J.E., Tamkun J.W., Lemischka I.R. and Hynes R.O., 1983, Three different fibronectin mRNAs arise by alternative splicing within the coding region, Cell, 35: 421–431.PubMedCrossRefGoogle Scholar
  92. Sugrue S.P. and Hay E.D., 1981, Response of basal epithelial cell surface and cytoskeleton to solubilized extracellular matrix molecules, J. Cell Biol., 91: 45–54.PubMedCrossRefGoogle Scholar
  93. Sugrue S.P. and Hay E.D., 1982, Interaction of embryonic corneal epithelium with exogenous collagen, laminin and fibronectin: role of endogenous protein synthesis, Dev. Biol., 92: 97–106.Google Scholar
  94. Tamkun J.W. and Hynes R.O., 1982, Plasma fibronectin is synthesized and secreted by hepatocytes, J. Biol. Chem., 258: 4641–4647.Google Scholar
  95. Termine J.D., Kleinman H.K., Whitson S.W., Conn K.M., McGarvey M.L. and Martin G.R., 1981, Osteonectin, a bone specific protein linking mineral to collagen, Cell, 26: 99–105.PubMedCrossRefGoogle Scholar
  96. Terranova V.P., Rohrbach D.H. and Martin G.R., 1980, Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen, Cell, 22: 719–726.PubMedCrossRefGoogle Scholar
  97. Terranova V.P., Rao C.N., Kalebic T., Margulies I.M. and Liotta L.A., 1983, Laminin receptor on human breast carcinoma cells, Proc. Natl. Acad. Sci. USA, 80: 444–448.PubMedCrossRefGoogle Scholar
  98. Thiery J.P, Brackenbury R., Rutishauser U. and Edelman G.M., 1977, Adhesion among neural cells of the chick embryo II Purification and characterization of a cell adhesion molecule from neural retina, J. Biol. Chem., 252: 6841–6845.PubMedGoogle Scholar
  99. Thiery J.P., 1984, Mechanisms of cell migration in the vertebrate embryo, Cell Diff., 15: 1–15.CrossRefGoogle Scholar
  100. Thiery J.P., Duband J.L. and Delouvee A., 1982 a, Pathways and mechanism of avian trunk neural crest cell migration and localization, Dev. Biol., 93: 324–343.Google Scholar
  101. Thiery J.P., Duband J.L., Rutishauser U. and Edelman G.M., 1982 b, Cell adhesion molecules in early chicken embryogenesis, Proc. Natl. Acad. Sci. USA, 79: 6737–6741.Google Scholar
  102. Thiery J.Pt, Delouvee A., Gallin W., Cunningham B.A. and Edelman G.M., 1984 a, Ontogenetic expression of cell adhesion molecules: L-CAM is found in epithelia derived from the three primary germ layers, Dev. Biol., 102: 61–78.Google Scholar
  103. Thiery J.P., Delouvee A., Grumet M. and Edelman G.M., 1984 b, Initial appearance and regional distribution of the neuron-glia cell adhesion molecule (Ng-CAM) in the chick embryo, J. Cell Biol., in press.Google Scholar
  104. Timpl R., Rohde H., Robey P.G., Rennard S.I., Foidart J.M. and Martin G.R., 1979, Laminin, a glycoprotein from basement membranes, J. Biol. Chem., 259: 9933–9937.Google Scholar
  105. Toole B.P., 1981, Glycosaminoglycans in morphogenesis. In: “Cell Biology of extracellular matrix”, E.D. Hay ed., Plenum Press, PP 259–294.CrossRefGoogle Scholar
  106. Tosney K.W., 1978, The early migration of neural crest cells in the trunk region of the avian embryo. An electron microscopic study., Dev. Biol., 62: 317–333.Google Scholar
  107. Tosney K.W., 1982, The segregation and early migration of cranial neural crest cells in the chick embryo, Dev. Biol., 16: 78–106.Google Scholar
  108. Tucker G.C., Aoyama H., Lipinski M., Tursz T. and Thiery J.P., 1984, Identical reactivity of monoclonal antibodies HNK–1 and NC–1: Conservation in vertebrates on cells derived from the neural primordium and some leukocytes, Cell Differ., 14: 223–230.PubMedCrossRefGoogle Scholar
  109. Tucker R.P. and Erickson C.A., 1984, Morphoplogy and behaviour of quail neural crest cells in artificial three-dimensional extracellular matrices, Dev. Biol., 104: 390–405.Google Scholar
  110. Twitty V.C. and Niu N.C., 1954, The motivation of cell migration studied by isolation of embryonic pigment cells singly and in small groups in vitro, J. Exp. Zool., 125: 541–574.CrossRefGoogle Scholar
  111. Vaheri A. and Mosher D.F., 1978, High molecular weight cell surface associated glycoprotein (fibronectin) lost in malignant transformation, Biochem. Biophys. Acta, 516: 1–25.Google Scholar
  112. Valinsky J. and Le Douarin N.M., 1984, Production of plasminogen activator by migrating cephalic neural crest cells, in press.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Jean-Loup Duband
    • 1
    • 2
  • Jean-Paul Thiery
    • 1
    • 2
  1. 1.Institut d’Embryologie du C.N.R.S.Nogent-Sur-MarneFrance
  2. 2.Collège de FranceNogent-Sur-MarneFrance

Personalised recommendations