Cellular and Molecular Control of Cell Interactions in Embryogenesis

  • Adam S. G. Curtis
Part of the NATO ASI Series book series (NSSA, volume 99)


One of the main interests of developmental biologists over the last fifty years has been to achieve an understanding of the mechanisms whereby cells are placed and held in their correct positions in the embryo. Thus a great deal of interest has been devoted to developing an understanding of morphogenetic movements. In turn the consideration of these mechanisms raises questions about the involvement of components of the plasmalemma and of the cytoskeleton in such events. Another way of looking at this is to state that we are now investigating the molecular biology of cell interactions and thus in turn the aspects of cell behaviour which control morphogenesis.


Cell Adhesion Cell Interaction Evanescent Wave Zonula Occludens Morphogenetic Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abercrombie, In vitro, 6: 128–142 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Abercrombie, Proc. Roy. Soc. Lond., B 207: 129–147 (1980).CrossRefGoogle Scholar
  3. 3.
    A.W. Adamson, Physical chemistry of surfaces. 4th Edition. Wiley-Interscience, New-York (1982).Google Scholar
  4. 4.
    J.D. Aplin and R.C. Hughes, J. Cell Sci., 50: 89–103 (1981).PubMedGoogle Scholar
  5. 5.
    S.H. Barondes and S.D. Rosen, in: ‘Surface Membrane Receptors’, R.A. Bradshaw, W.A. Frazier, R.C. Merrell, D.I. Gottlieb and R.A. Hogue-Angeletti, Plenum Press, New-York, pp. 39–55 (1976).Google Scholar
  6. 6.
    H. Beug, F.E. Katz, A. Stein and G. Gerisch, Proc. Nat. Acad. Sci. USA., 70: 3150–3154 (1973).CrossRefGoogle Scholar
  7. 7.
    M.W. Brightman, J. Cell Biol., 26: 99–123 (1965).PubMedCrossRefGoogle Scholar
  8. 8.
    M.M. Burger, W. Burkart, G. Weinbaum and J. Jumblatt, Symp. Soc. Exp. Biol., 32: 25–50 (1978).Google Scholar
  9. 9.
    M. Crandall, Symp. Soc. Exp. Biol., 32: 105–120 (1978)PubMedGoogle Scholar
  10. 10.
    L.A. Culp, J. Cell Biol., 63: 71–83 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    A.S.G. Curtis, J. Cell Biol., 20: 199–215 (1964).PubMedCrossRefGoogle Scholar
  12. 12.
    A.S.G. Curtis, Prog. Biophys. and Mol. Biol., 27: 315–386 (1973).Google Scholar
  13. 13.
    A.S.G. Curtis, in press.Google Scholar
  14. 14.
    A.S.G. Curtis, C. Chandler and N. Picton, J. Cell Sci., 18: 375–384 (1975).PubMedGoogle Scholar
  15. 15.
    A.S.G. Curtis and J.V. Forrester, J. Cell Sci., in press.Google Scholar
  16. 16.
    A.S.G. Curtis, J.V. Forrester, C. Mclnnes and F. Lawrie, J. Cell Biol., 97: 1500–1506 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    A.S.G. Curtis and M. Varde, J. Natl. Cancer Inst., 33: 15–26 (1964).PubMedGoogle Scholar
  18. 18.
    G.A. Dunn and J.P. Heath, Exp. Cell Res., 101: 1–14 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    G. Gerisch, Curr. Topics Dev. Biol., 14: 243–270 (1980).CrossRefGoogle Scholar
  20. 20.
    D. Gingell and J.A. Fornes, Biophys. J., 16: 1131–1153 (1977).CrossRefGoogle Scholar
  21. 21.
    D. Gingell and I. Todd, J. Cell Sci., 41: 135–149 (1980).PubMedGoogle Scholar
  22. 22.
    F. Grinnell, Intl. Rev. Cytol., 53: 65–144 (1978).CrossRefGoogle Scholar
  23. 23.
    H.K. Kleinman, R.J. Klebe and G.R. Martin, J. Cell Biol., 88: 473–485 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    L.D. Landau and E.M. Lifshitz, Fluid Mechanics. Pergamon Press, Oxford. (1959).Google Scholar
  25. 25.
    D.H. Napper, J. Coll. Interfac. Sci., 32: 106–114 (1970).Google Scholar
  26. 26.
    M.D. Pierschbacher and E. Ruoslahti, Nature, 309: 30–34 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    K.R. Porter, M. Beckerle and W. McNiven, in: ‘Modern Cell Biology’ vol. 2, ed. B. Satir, A.R. Liss, New-York, pp. 259–302 (1983).Google Scholar
  28. 28.
    D.A. Rees, R.A. Badley and A. Woods, in: ‘Cell Adhesion and Motility’, ed. A.S.G. Curtis and J.D. Pitts, Cambridge Univ. Press, Cambridge, pp. 389–408 (1980).Google Scholar
  29. 29.
    U. Rutishauser, Nature, 310: 549–554 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    D. Schubert, M. LaCorbiere, F.G. Klier and C. Birdwell, Cold Spring Harbor Symp. Quant. Biol., 48: 539–549 (1983).CrossRefGoogle Scholar
  31. 31.
    H.I. Smith and D.C. Flanders, Appl. Phys. letters, 32: 349–350(1978).CrossRefGoogle Scholar
  32. 32.
    M.S. Steinberg, in: ‘Cellular Membranes in Development’, ed. M. Locke, Academic Press, New-York, pp. 321–366 (1964).Google Scholar
  33. 33.
    L. Stryer, Ann. Rev. Biochem., 47: 819–846 (1978).PubMedCrossRefGoogle Scholar
  34. 34.
    P.L. Townes and J. Holtfreter, J. Exp. Zool., 128: 53–120 (1955).CrossRefGoogle Scholar
  35. 35.
    P.H. Weigel, J. Cell Biol., 87: 855–861 (1980).PubMedCrossRefGoogle Scholar
  36. 36.
    P.H. Weigel, E. Schmell, Y.C. Lee and S. Roseman, J. Biol. Chem., 253: 330–333 (1978).PubMedGoogle Scholar
  37. 37.
    L. Weiss and D.L. Kapes, Exp. Cell Res., 41: 601–608 (1966).PubMedCrossRefGoogle Scholar
  38. 38.
    R.M. Weisz, K. Balakrishnan, B.A. Smith and H.M. McConnell, J. Biol. Chem., 257: 6440–6446 (1981).Google Scholar
  39. 39.
    A. Williams, Calc. Tissue Res., 6: 11–19 (1970).CrossRefGoogle Scholar
  40. 40.
    C.C. Wylie and J. Heasman, Phil. Trans. Roy. Soc. Lond., B 299: 177–183 (1982).CrossRefGoogle Scholar
  41. 41.
    K.M. Yamada, J. Cell Biol., 78: 520–541 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Adam S. G. Curtis
    • 1
  1. 1.Department of Cell BiologyUniversity of GlasgowGlasgowUK

Personalised recommendations