Advertisement

Mathematical Analysis of Oxygen Transport to Tissue in the Human

  • Eugene H. Wissler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 191)

Abstract

A composite mathematical model which is capable of integrating thermal, respiratory, and circulatory factors in the analysis of oxygen transport is described in this paper. The model has several uses. It provides a mechanism for evaluating parameters for the human when only indirect measurements are available. It can be used also to predict responses under various pathological or stressful conditions. Much work remains to be done, but it is felt that a preliminary report should be included in this conference.

Keywords

Lactic Acid Oxygen Transport Ventilation Rate Blood Flow Rate Carbon Dioxide Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bevegard, B. S. and J. T. Shepherd. J. Appl. Physiol., 21, 123–132 (1966).PubMedGoogle Scholar
  2. 2.
    Bischoff, K. B., R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. J. Pharm. Sei., 60, 1128–1133 (1971).CrossRefGoogle Scholar
  3. 3.
    Fishman, A. P. In Handbook of Physiology, Section 2. Circulation II, 1682, W. F. Hamilton, Sr., Editor, Am. Physiol. Soc, Washington, 1963.Google Scholar
  4. 4.
    Grodins, F. S., J. Buell, and A. J. Bart. J. Appl. Physiol., 22, 260–276 (1967).PubMedGoogle Scholar
  5. 5.
    Groom, A. C. and L. E. Farhi. J. Appl. Physiol., 22, 740–745 (1967).PubMedGoogle Scholar
  6. 6.
    Knuttgen, H. G. and B. Saltin. J. Appl. Physiol., 32, 690–694 (1972).PubMedGoogle Scholar
  7. 7.
    Lambertsen, C. J. In Medical Physiology, V. B. Mountcastle, Editor, C. V. Mosby Co., St. Louis, 1968.Google Scholar
  8. 8.
    Lambertsen, C. J., R. H. Kough, D. Y. Cooper, G. L. Emmel, H. H. Loeschcke and C. F. Schmidt. J. Appl. Physiol., 5, 803–813 (1953).Google Scholar
  9. 9.
    Levitt, D. G. J. Theor. Biol., 34, 103–124 (1972).CrossRefGoogle Scholar
  10. 10.
    Mitchell, J. W., T. L. Galvez, J. Hengle, G. E. Myers, and K. L. Siebecker. J. Appl. Physiol., 29, 859–865 (1970).PubMedGoogle Scholar
  11. 11.
    Pennes, H. H. J. Appl. Physiol., 1, 93–122 (1948).Google Scholar
  12. 12.
    Reynolds, W. J., H. T. Milhorn, Jr., and G. H. Holloman, Jr. J. Appl. Physiol., 33, 47–54 (1972).PubMedGoogle Scholar
  13. 13.
    Stoll, P. J. J. Appl. Physiol., 27, 389–399 (1969).Google Scholar
  14. 14.
    Stolwijk, J. A. J. and J. D. Hardy. Pflügers Arch., 291, 129–162 (1966).CrossRefGoogle Scholar
  15. 15.
    Wissler, E. H. Bull. Math. Biophysics, 26, 147–166 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Eugene H. Wissler
    • 1
  1. 1.The University of Texas at AustinAustinUSA

Personalised recommendations